Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 131-138 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.131


References

1. Kuhs W.F., Nitsche R., Scheunemann K. The argy-rodites - a new family of tetrahedrally close-packed structures. Mat. Res. Bull. 1979. 14, No 2. P. 241-248. https://doi.org/10.1016/0025-5408(79)90125-9

2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294. https://doi.org/10.1524/zkri.220.2.281.59142

3. Beeken R.B., Garbe J.J., Petersen N.R., Stoneman M.R. Electrical properties of the Ag6PSe5X (X = Cl, Br, I) argyrodites. J. Phys. Chem. Solids. 2004. 65. P. 1011-1014. https://doi.org/10.1016/j.jpcs.2003.10.060

4. Deiseroth H.-J., Kong S.-T., Eckert H. et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. Engl. 2008. 47, No 4. P. 755-758. https://doi.org/10.1002/anie.200703900

5. Reissig F., Heep B., Panthofer M., Wood M., Anand S., Snyder G. J., Tremel W. Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6?xSx. Dalton Trans. 2019. 48. P. 15822-15829. https://doi.org/10.1039/C9DT03247A

6. Kraft Ì.A., Ohno S., Zinkevich T. et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1?xGexS5I for all-solid-state batteries. J. Am. Chem. Soc. 2018. 140. P. 16330?16339. https://doi.org/10.1021/jacs.8b10282

7. Ohno S., Helm B., Fuchs T. et al. Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1-xMxS5I (M = Si, Ge, Sn). Chem. Mater. 2019. 31, No 13. P. 4936-4944. https://doi.org/10.1021/acs.chemmater.9b01857

8. Studenyak I.P., Kranjcec M., Kovacs Gy.S., Desnica-Frankovic I.D., Panko V.V., Slivka V.Yu. The excitonic processes and Urbach rule in Cu6P(S1?xSex)5I crystals in the sulfur-rich region. Mat. Res. Bull. 2001. 36, No 1-2. P. 123-135. https://doi.org/10.1016/S0025-5408(01)00508-6

9. Kranjcec M., Studenyak I.P., Kurik M.V. Urbach rule and disordering processes in Cu6P(S1?xSex)5Br1?yIy superionic conductors. J. Phys. Chem. Solids. 2006. 67, No 4. P. 807-817. https://doi.org/10.1016/j.jpcs.2005.10.184

10. Tomm Y., Schorr S., Fiechter S. Crystal growth of argyrodite-type phases Cu8-xGeS6-xIx and Cu8-xGeSe6?xIx (0 ? x ? 0.8). J. Cryst. Growth. 2008. 310. P. 2215-2221. https://doi.org/10.1016/j.jcrysgro.2007.11.184

11. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Electrical properties of copper- and silver-containing superionic (Cu1?xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics. 2020. 345. No 115183. https://doi.org/10.1016/j.ssi.2019.115183

12. Chen R., Qiu P., Jiang B. et al. Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering. J. Mater. Chem. A. 2018. 6. P. 6493-6502. https://doi.org/10.1039/C8TA00631H

13. Qi X., Chen J., Guo K. et al. Thermal stability of Ag9GaSe6 and its potential as a functionally graded thermoelectric material. Chem. Eng. J. 2019. 374. P. 494-501. https://doi.org/10.1016/j.cej.2019.05.179

14. Li W., Lin S., Ge B., Yang J., Zhang W., Pei Y. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Adv. Sci. 2016. 3, No 11. P. 1600196. https://doi.org/10.1002/advs.201600196

15. Haznar A., Pietraszko A., Studenyak I.P. X-ray study of the superionic phase transition in Cu6PS5Br. Solid State Ionics. 1999. 119, No 1-4. P. 31-36. https://doi.org/10.1016/S0167-2738(98)00479-2

16. Zhou L., Assoud A., Zhang Q., Wu X., Nazar L.F. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 2019. 141, No 48. P. 19002-19013. https://doi.org/10.1021/jacs.9b08357

17. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I)-synthesis and electrical studies. Solid State Ionics. 1987. 23, No 1-2. P. 21-26. https://doi.org/10.1016/0167-2738(87)90077-4

18. Pogodin A.I., Filep M.J., Malakhovska T.O. et al. The copper argyrodites Cu7-nPS6-nBrn: Crystal growth, structures and ionic conductivity. Solid State Ionics. 341. P. 115023. 19. Dziaugys A., Banys J., Kezionis A., Samulionis V., Studenyak I. Conductivity investigations of Cu7GeS5I family fast-ion conductors. Solid State Ionics. 2008. 179, No 1-6. P. 168-171. https://doi.org/10.1016/j.ssi.2007.12.093

20. Orliukas A.F., Kazakevicius E., Kezionis A. et al. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics. 2009. 180, No 2-3. P. 183-186. https://doi.org/10.1016/j.ssi.2008.12.005

21. Studenyak I.P., Izai V.Yu., Studenyak V.I. et al. Influence of Cu6PS5² superionic nanoparticles on the dielectric properties of 6ÑÂ liquid crystal. Liquid Crystals. 2017. 44, No 5. P. 897-903. https://doi.org/10.1080/02678292.2016.1254288

22. Salkus T., Kazakevicius E., Banys J. et al. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics. 2014. 262. P. 597-600. https://doi.org/10.1016/j.ssi.2013.10.040

23. Studenyak I.P., Kranjcec M., Izai V.Yu. et al. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films. 2012. 520, No 6. P. 1729-1733. https://doi.org/10.1016/j.tsf.2011.08.043

24. Duan J., Tang X., Dai H. et al. Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energ. Rev. 2020. 3. P. 1-42. https://doi.org/10.1007/s41918-019-00060-4

25. Albert S., Pillet S., Lecomte C., Pradel A., Ribes M. Disorder in Ag7GeSe5I, a superionic conductor: temperature-dependent anharmonic structural study. Acta Cryst. B. 2008. 64. P. 1-11. https://doi.org/10.1107/S0108768107059642

26. Studenyak I.P., Kranjcec M., Bilanchuk V.V. et al. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor. J. Phys. Chem. Solids. 2009. 70. P. 1478-1481. https://doi.org/10.1016/j.jpcs.2009.09.003

27. Zerouale A., Cros B., Deroide B., Ribes M. Electrical properties of Ag7GeSe5I. Solid State Ionics. 1988. No 28-30. P. 1317-1319. https://doi.org/10.1016/0167-2738(88)90378-5

28. Belin R., Zerouale A., Pradel A., Ribes M. Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra. Solid State Ionics. 2001. 143. P. 445-455. https://doi.org/10.1016/S0167-2738(01)00883-9

29. Albert S., Haines J., Granier D., Pradel A., Ribes M. Effect of pressure on the superionic argyrodite Ag7GeSe5I. J. Appl. Cryst. 2009. 42. P. 93-100. https://doi.org/10.1107/S0021889808034912

30. Pogodin A.I., Luchynets M M., Studenyak V.I. et al. Electrical conductivity studies of composites based on (Cu1-xAgx)7GeSe5I solid solutions. Ukr. J. Phys. 2020. 65, No 1. P. 55-60. https://doi.org/10.15407/ujpe65.1.55

31. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Structure, electrical conductivity, and Raman spectra of (Cu1-xAgx)7GeS5I and (Cu1-xAgx)7GeSe5I mixed crystals. Mater. Res. Bull. 2021. 135. No 111116. https://doi.org/10.1016/j.materresbull.2020.111116

32. Studenyak I.P., Pogodin A.I., Luchynets M.M. et al. Impedance studies and electrical conductivity of (Cu1-xAgx)7GeSe5I mixed crystals. J. Alloys and Compd. 2020. 817. No 152792. https://doi.org/10.1016/j.jallcom.2019.152792

33. Bendak A.V., Skubenych K.V., Pogodin A.I. et al. Influence of cation substitution on mechanical properties of (Cu1-xAgx)7GeSe5I mixed crystals and composites on their base. SPQEO. 2020. 23, No 1. P. 37-40. https://doi.org/10.15407/spqeo23.01.037

34. Bilanych V.V., Bendak A.V. et al. Studying the mechanical properties of (Cu1-xAgx)7GeS5I mixed crystals by using the micro-indentation method. SPQEO. 2018. 21, No 3. P. 273-276. https://doi.org/10.15407/spqeo21.03.273

35. Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. New Jersey: Wiley, 2008. https://doi.org/10.1002/9780470381588

36. Ivanov-Schitz A.K., Murin I.V. Solid State Ionics. St.-Petersburg: Univ. Press, 2000 (in Russian). 37. Huggins R.A. Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics. 2002. 8, No 3. P. 300-313. https://doi.org/10.1007/BF02376083