Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 139-147 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.139


References

1. Kabongo G.L., Mbule P.S., Mhlongo G.H. et al. Photoluminescence quenching and enhanced optical conductivity of P3HT-derived Ho3+-doped ZnO nanostructures. Nanoscale Res. Lett. 2016. 11. Article number 418. https://doi.org/10.1186/s11671-016-1630-3

2. Akyol M., Ekicibil A., Kiymac K. DC magnetic properties of the Ho doped ZnO compounds. J. Supercond. Nov. Magn. 2013. 26. P. 3257-3262. https://doi.org/10.1007/s10948-013-2135-2

3. Goel S., Sinha N., Kumar B. 3D hierarchical Ho-doped ZnO micro-flowers assembled with nanosheets: A high temperature ferroelectric material. Physica E: Low-dimensional Systems and Nanostructures. 2019. 105. P. 29-40. https://doi.org/10.1016/j.physe.2018.09.002

4. Pradyumnan P.P., Paulson A., Sabeer N.A.M., Deepthy N. Enhanced power factor in Ho3+ doped ZnO: A new material for TE application. AIP Conf. Proc. 2017. 1832. P. 110055. https://doi.org/10.1063/1.4980679

5. Mereu R.A., Mesaros A., Vasilescu M. et al. Synthesis and characterization of un-doped, Al and/or Ho doped ZnO thin films. Ceramics Intern. 2013. 39, No 5. P. 5535-5543. https://doi.org/10.1016/j.ceramint.2012.12.067

6. Singh S., Deepthi J.N.D., Ramachandran B., Rao M.S.R. Synthesis and comparative study of Ho and Y doped ZnO nano-particles. Mater. Lett. 2011. 65. P. 2930-2933. https://doi.org/10.1016/j.matlet.2011.06.006

7. Lashkarev G.V., Shtepliuk I.I., Ievtushenko A.I. et al. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide. Low Temperature Physics. 2015. 41. P. 129-144. https://doi.org/10.1063/1.4908204

8. Ievtushenko A., Karpyna V., Eriksson J. et al. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures. Superlattices and Microstructures. 2018. 117. P. 121-131. https://doi.org/10.1016/j.spmi.2018.03.029

9. Ronfard-Haret J.-C., Azuma K., Bachir S., Kouyate D., Kossanyi J. Electroluminescence of Ho3+ ions in semiconducting polycrystalline zinc oxide electrodes in contact with aqueous electrolyte. J. Mater. Chem. 1994. 4, No 1. P. 139-144. https://doi.org/10.1039/JM9940400139

10. Sheydaei M., Fattahi M., Ghalamchi L., Vatanpour V. Systematic comparison of sono-synthesized Ce-, La- and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor. Ultrasonics Sonochem. 2019. 56. P. 361-371. https://doi.org/10.1016/j.ultsonch.2019.04.031

11. Pant H.R., Pant B., Sharma R.K. et al. Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceramics Intern. 2013. 39, No 2. P. 1503-1510. https://doi.org/10.1016/j.ceramint.2012.07.097

12. Phuruangrat A., Yayapao O., Thongtem T., Thongtem S. Preparation, characterization and pho-to-catalytic properties of Ho doped ZnO nanostruc-tures synthesized by sonochemical method. Super-lattices and Microstructures. 2014. 67. P. 118-126. https://doi.org/10.1016/j.spmi.2013.12.023

13. Hakimyfard A. and Mohammadi S. ZnFe2O4 and ZnO-Zn1-xMxFe2O4+? (M = Sm3+, Eu3+ and Ho3+): Synthesis, physical properties and high performance visible light induced photocatalytic degradation of malachite green. Adv. Powder Technol. 2019. 30, No 6. P. 1257-1268. https://doi.org/10.1016/j.apt.2019.04.005

14. Okte A.N. Characterization and photocatalytic activity of Ln (La, Eu, Gd, Dy and Ho) loaded ZnO nanocatalysts. Appl. Catalysis A: General. 2014. 475. P. 27-39. https://doi.org/10.1016/j.apcata.2014.01.019

15. Popa M., Schmerber G., Toloman D. et al. Mag-netic and electrical properties of undoped and hol-mium doped ZnO thin films grown by sol-gel me-thod. Adv. Eng. Forum. 2013. 8-9. P. 301-308. https://doi.org/10.4028/www.scientific.net/AEF.8-9.301

16. Franco A., Pessoni H.V.S. Optical band-gap and dielectric behavior in Ho-doped ZnO nanoparticles. Mater. Lett. 2016. 180. P. 305-308. https://doi.org/10.1016/j.matlet.2016.04.170

17. Sobczyk M., Marek L. Comparative study of optical properties of Ho3+-doped RE2O3-Na2O-ZnO-TeO2 glasses. J. Lumin. 2019. 206. P. 308-318. https://doi.org/10.1016/j.jlumin.2018.10.071

18. Rai G.M., Iqbal M.A., Xu Y., Will I.G., Zhang W. Influence of rare earth Ho3+ doping on structural, microstructure and magnetic properties of ZnO bulk and thin film systems. Chin. J. Chem. Phys. 2011. 24, No 3. P. 353-357. https://doi.org/10.1088/1674-0068/24/03/353-357

19. Pavlov L.P. Methods for Measuring the Parameters of Semiconductor Devices. Vysshaya Shkola, Moscow, 1987 (in Russian).

20. Emsley J. The Elements. Oxford, Clarendon Press, 1991.

21. Samsonov G.V. Physical and Chemical Properties of Oxides. Moscow, Metallurgiya, 1978 (in Russian).

22. Pankove J. Optical Processes in Semiconductors. David Sarnoff Research Center, RCA Laboratories, New Jersey, 1971.

23. Chen Y.W., Liu Y.C., Lu S.X. et al. Optical properties of ZnO and ZnO:In nanorods assembled by sol-gel method. J. Chem. Phys. 2005. 123. P. 134701. https://doi.org/10.1063/1.2009731

24. Meyer B.K., Alves H., Hofmann D.M. et al. Bound exciton and donor-acceptor pair recombinations in ZnO. phys. status solidi (d). 2004. 241, No 2. P. 231-260. https://doi.org/10.1002/pssb.200301962

25. Singh J., Ranwa S., Akhtar J., Kumar M. Growth of residual stress-free ZnO films on SiO2/Si substrate at room temperature for MEMS devices. AIP Adv. 2015. 5. P. 067140. https://doi.org/10.1063/1.4922911

26. Leiter F., Alves H., Pfisterer D. et al. Oxygen vacancies in ZnO. Physica B: Condens. Matter. 2003. 340-342. P. 201-204. https://doi.org/10.1016/j.physb.2003.09.031. https://doi.org/10.1016/j.physb.2003.09.031

27. Galdamez-Martinez, Santana G., Guell F. et al. Photoluminescence of ZnO nanowires: A review. Nanomaterials. 2020. 10, No 5. P. 857. https://doi.org/10.3390/nano10050857

28. Dixit T., Palani I.A. and Singh V. Selective tuning of enhancement in near band edge emission in hydrothermally grown ZnO nanorods coated with gold. J. Lumin. 2016. 170. P. 180-186. https://doi.org/10.1016/j.jlumin.2015.10.003

29. Matsumoto T., Kato H., Miyamoto K. et al. Correlation between grain size and optical properties in zinc oxide thin films. Appl. Phys. Lett. 2002. 81. P. 1231. https://doi.org/10.1063/1.1499991

30. Kayaci F., Vempati S., Donmez I. et al. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density. Nanoscale. 2014. 6. P. 10224-10234. https://doi.org/10.1039/C4NR01887G

31. Cao B., Cai W., Zeng H. Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl. Phys. Lett. 2006. 88. P. 161101. https://doi.org/10.1063/1.2195694

32. Quemener V., Vines L., Monakhov E.V., Svensson B.G. Evolution of deep electronic states in ZnO during heat treatment in oxygen- and zinc-rich ambients. Appl. Phys. Lett. 2012. 100, No 11. P. 112108. https://doi.org/10.1063/1.3693612

33. Boyer J.C., Vetrone F., Capobianco J.A. et al. Optical transitions and upconversion properties of Ho3+ doped ZnO-TeO2 glass. J. Appl. Phys. 2003. 93, No 12. P. 9460-9465. https://doi.org/10.1063/1.1577817

34. Damen T.C., Porto S.P.S., Tell B. Raman effect in zinc oxide. Phys. Rev. 1966. 142. P. 570. https://doi.org/10.1103/PhysRev.142.570

35. Manjon F.J., Mari B., Serrano J., Romero A.H. Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 2005. 97. P. 053516. https://doi.org/10.1063/1.1856222

36. Karpyna V., Ievtushenko A., Kolomys O. et al. Raman and photoluminescence study of Al, N-codoped ZnO films deposited at oxygen-rich conditions by magnetron sputtering. phys. status solidi (d). 2020. 257, No 6. P. 1900788. https://doi.org/10.1002/pssb.201900788