Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 166-174 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.166


References

1. Madhuri K.P., Sagade A.A., Santra P.K. and Tabuchi H.N.S. Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation. Beilstein J. Nanotechnol. 2020. 11. P. 814-820. https://doi.org/10.3762/bjnano.11.66

2. Mockert H., Schmeisser D., Gopel W. Lead phtha-locyanine (PbPc) as a prototype organic material for gas sensors: comparative electrical and spectro-scopic studies to optimize O2 and NO2 sensing. Sensors and Actuators. 1989. 19. P. 159-176. https://doi.org/10.1016/0250-6874(89)87068-4

3. Haman C., Kampfrath G., Mueller M. Gas and humidity sensor based on organic active thin films. Sensors and Actuators B. 1990. 1. P. 142-147. https://doi.org/10.1016/0925-4005(90)80190-B

4. Kanefusa S., Nitta M. The detection of H2 gas by metal phthalocyanine based gas sensors. Sensors and Actuators B. 1992. 9. P. 85-90. https://doi.org/10.1016/0925-4005(92)80200-H

5. Abass A.K., Krier A., Collins R.A. The influence of iodine on the electrical properties of lead phthalocyanine (PbPc) interdigital planar gas sensors. phys. status solidi (a). 1994. 142. P. 425-442. https://doi.org/10.1002/pssa.2211420216

6. Chen J., Yu P., Zhang Y., Shan Y., Wang D. MgAl/PbPc/Cu organic thin film diode preparation and gas - sensing characteristics analysis. Adv. Mater. Res. 2014. 981. P. 822-825. https://doi.org/10.4028/www.scientific.net/AMR.981.822

7. Verzimacha Ya.I., Kovalchuk A.V., Kurik M.V., Haman C., Mrwa A. Solar cell of Schottky type with Ni PbPc interface. phys. status solidi (a). 1984. 82. P. K111-K115. https://doi.org/10.1002/pssa.2210820165

8. Sakurai T., Ohashi T., Kitazume H. et al. Structural control of organic solar cells based on nonplanar metallophthalocyanine/C60 heterojunction using buffer layers. Organic Electronics. 2011. 12. P. 966- 973. https://doi.org/10.1016/j.orgel.2011.03.016

9. Shim H.-S., Kim H.J., Kim J.W. et al. Enhancement of near infrared absorption with high fill factor in lead phthalocyanine based organic solar cells. J. Mater. Chem. 2012. 22. P. 9077-9081. https://doi.org/10.1039/c2jm30417a

10. Mukherjee B., Mukherjee M. Programmable memory in organic field effect transistor based on lead phthalocyanine. Organic Electronics. 2009. 10. P. 1282-1287. https://doi.org/10.1016/j.orgel.2009.07.006

11. Peng Y., Lv W., Yao B. et al. High performance near infrared photosensitive organic field effect transistors realized an organic hybrid planar bulk heterojunction. Organic Electronics. 2013. 14. P. 1045-1051. https://doi.org/10.1016/j.orgel.2013.02.005

12. Li Y., Zhang J., Lv W. et al. Substrate temperature dependent performance of near infrared photoresponsive organic field transistors based on lead phthalocyanine. Synthetic Metals. 2015. 205. P. 190-194. https://doi.org/10.1016/j.synthmet.2015.04.011

13. Jennings C., Aroca R., Hor Ah.-M., Loutfy R.O. Raman spectra of solid films - IV. Pb and Sn phthalocyanine complexes. Spectrochim. Acta A. 1985. 41, No 9. P. 1095-1099. https://doi.org/10.1016/0584-8539(85)80010-6

14. Xi L., Jin Z. Investigation of the adsorption behavior of PbPc on graphene by Raman spectroscopy. Acta Physico-Chimica Sinica. 2012. 28, No 10. P. 2355-2362. https://doi.org/10.3866/PKU.WHXB201208242

15. Dexters W., Bourgeois E., Nesladek M. et al. Molecular orientation of lead phthalocyanine on (100) oriented single crystal diamond surfaces. Phys. Chem. Chem. Phys. 2015. 17. P. 9619-9623. https://doi.org/10.1039/C5CP00174A

16. Voudoukis N.F. Raman spectroscopy and innovative solar cells optical characterization of molecules. European Journal of Electrical and Computer Engineering (EJECE). 2019. 3, No 2. P. 1-6. https://doi.org/10.24018/ejece.2019.3.2.67

17. Tackley D.R., Dent G., Smith W.E. Phthalocyanines: structure and vibrations. Phys. Chem. Chem. Phys. 2001. 3. P. 1419-1426. https://doi.org/10.1039/b007763l

18. Zhang Y., Zhang X., Liu Z., Xu H., Jiang J. Comparative density functional theory study of the structures and properties of metallophthalocyanines of group IVB. Vibrational Spectroscopy. 2006. 40. P. 289-298. https://doi.org/10.1016/j.vibspec.2005.11.004

19. Hamamoto N., Sonoda H., Sumimoto M. et al. Theoretical study on crystal polymorphism and electronic structure of lead(II) phthalocyanine using model dimers. RSC Adv. 2017. 7. P. 8646-8653. https://doi.org/10.1039/C6RA27269J

20. Collins R.A., Krier A., Abass A.K. Optical properties of lead phthalocyanine (PbPc) thin films. Thin Solid Films. 1993. 229. P. 113-118. https://doi.org/10.1016/0040-6090(93)90417-N

21. Vasseur K., Rand B.P., Cheyns D., Froyen L., Heremans P. Structural evolution of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells. Chem. Mater. 2011. 23. P. 886-895. https://doi.org/10.1021/cm102329v

22. Sharma G.D., Choudharu V.S., Roy M.S. Electrical and photovoltaic properties of devices based on PbPc TiO2 thin films. Solar Energy Materials and Solar Cells. 2007. 91, No 12. P. 1087-1096. https://doi.org/10.1016/j.solmat.2007.03.003

23. Kalugasalam P., Ganesan S. Photoluminescence of lead phthalocyanine thin films. Optoelectronics and Advanced Materials, Rapid Communications. 2010. 4, No 2. P. 154-159.

24. Tackley D.R., Dent G., Smith W.E. IR and Raman assignments for zinc phthalocyanine from DFT calculations. Phys. Chem. Chem. Phys. 2000. 2. P. 3949-3955. https://doi.org/10.1039/b005091l