Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 175-184 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.175


References

1. Hangleiter A. Nonradiative recombination via deep impurity levels in silicon: Experiment. Phys. Rev. B. 1987. 35, No 17. P. 9149-9160. https://doi.org/10.1103/PhysRevB.35.9149

2. Hangleiter A. Nonradiative recombination via deep impurity levels in semiconductors: The excitonic Auger mechanism. Phys. Rev. B. 1988. 37, No 5. P. 2594-2604. https://doi.org/10.1103/PhysRevB.37.2594

3. Abakumov V.N., Perel V.l., Yassievich I.N. Nonradiative Recombination in Semiconductors. Elsevier, 1991.

4. Yoshikawa K., Yoshida W., Irie T. et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Solar Energy Materials and Solar Cells. 2017. 173. P. 37-42. https://doi.org/10.1016/j.solmat.2017.06.024

5. Yoshikawa K., Kawasaki H., Yoshida W. et al. Silicon heterojunction solar cell with inter-digitated back contacts for a photoconversion effciency over 26%. Nature Energy. 2017. 2, No 5. P. 17032, 8 p.

6. Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. Solar cell efficiency tables (Version 55). Progress in Photovoltaics. 2020. 28, No 1. P. 3-15. https://doi.org/10.1002/pip.3228

7. McIntosh K.R., Baker-Finch S.C. A parameteriza-tion of light trapping in wafer-based solar cells. IEEE J. Photovolt. 2015. 5, No 6. P. 1563-1570. https://doi.org/10.1109/JPHOTOV.2015.2465175

8. Fell A., McIntosh K.R., Fong K.C. Simplified device simulation of silicon solar cells using a lumped parameter optical model. IEEE J. Photovoltaics. 2016. 6, No 3. P. 611-616. https://doi.org/10.1109/JPHOTOV.2016.2528407

9. Sachenko A.V., Kostylyov V.P., Bobyl A.V. et al. The effect of base thickness on photoconversion efficiency in textured silicon-based solar cells. Techn. Phys. Lett. 2018. 44. P. 873-876. https://doi.org/10.1134/S1063785018100139

10. Sachenko A.V., Kostylyov V.P., Vlasyuk V.M., Sokolovskyi I.O., and Evstigneev M. Optimization of textured silicon solar cells. 47th IEEE Photovoltaic Specialists Conference, Canada, Calgary, 15-21 June 2020. https://doi.org/10.1109/PVSC45281.2020.9300877

11. Sachenko A.V., Kostylyov V.P., Vlasyuk V.M., Sokolovskyi I.O., and Evstigneev M. The influence of the exciton nonradiative recombination in silicon on the photoconversion efficiency. Proc. 32 European Photovoltaic Solar Energy Conference and Exhibition, Germany, Munich, 20-24 June 2016, pp. 141-147.

12. Richter A., Glunz S. W., Werner F., Schmidt J., and Cuevas A. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B. 2012. 86, No 16. P. 165202, 14 p. https://doi.org/10.1103/PhysRevB.86.165202

13. Richter A., Hermle M., and Glunz S.W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 2013. 3, No 4. P. 1184-1191. https://doi.org/10.1109/JPHOTOV.2013.2270351

14. Richter A., Benick J., Feldmann F., Fell A., Hermle M., Glunz S.W. n-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Solar Energy Materials and Solar Cells. 2017. 173. P. 96-105. https://doi.org/10.1016/j.solmat.2017.05.042

15. Sachenko A.V., Kostylyov V.P., Vlasiuk V.M. et al. Features in the formation of recombination current in the space charge region of silicon solar cells. Ukr. J. Phys. 2016. 61, No 10. P. 917-922.

16. Sachenko A.V., Kostylyov V. P., Sokolovskyi I.O. et al. Specific features of current flow in ?-Si: H/Si heterojunction solar cells. Techn. Phys. Lett. 2017. 43. P. 152-155. https://doi.org/10.1134/S1063785017020109

17. Sproul A.B. and Green M.A. Intrinsic carrier concentration and minority-carrier mobility of silicon from 77 to 300 K. J. Appl. Phys. 1993. 73. P. 1213. https://doi.org/10.1063/1.353288

18. Schenk A. Finite-temperature full random-phase approximation mode of band gap narrowing for silicon device simulation. J. Appl. Phys. 1998. 84. P. 3684-3695. https://doi.org/10.1063/1.368545

19. Lytovchenko V.H., Gorban A.P. Fundamentals of Physics of Microelectronic Systems Metal-Dielectric-Semiconductor. Kiev, Naukova dumka, 1978 (in Russian).

20. Kostylyov V.P., Sachenko A.V., Sokolovskyi I.O. Influence of surface centers on the effective surface recombination rate and the parameters of silicon solar cells. Ukr. J. Phys. 2013. 58, No 4. P. 362-369.

21. McIntosh K.R., Black L.E. On effective surface recombination parameters. J. Appl. Phys. 2014. 116. P. 014503. https://doi.org/10.1063/1.4886595

22. Graff K. Metal Impurities in Silicon-Device Fabrication. Springer Series in Materials Science. 2000. 24. Berlin, Springer-Verlag. https://doi.org/10.1007/978-3-642-57121-3

23. Green M.A. Intrinsic concentration, effective densities of states, and effective mass in silicon. J. Appl. Phys. 1990. 67, No 6. P. 2944-2955. https://doi.org/10.1063/1.345414

24. Gorban A.P., Zuev V.A., Kostylyov V.P., Sachenko A.V., Serba A.A., Chernenko V.V. About tempe-rature dependences of equilibrium and non-equili-brium characteristics in silicon. Optoelectronics and Semiconductor Technique. 2001. 36. P. 161-165 (in Russian).