Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (2) P. 200-209 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.200


References

1. Pekur D.V., Sorokin V.M., Nikolaenko Y.E. Features of wall-mounted luminaires with different types of light sources. Electrica. 2021. 21, No 1. P. 32-40. https://doi.org/10.5152/electrica.2020.20017

2. Schubert E., Kim J.K. Solid-state light sources getting smart. Science. 2005. 308. P. 1274-1278. https://doi.org/10.1126/science.1108712

3. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. Experimental study of a compact cooling system with heat pipes for powerful led matriõ. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2020. ¹ 3-4. P. 35-41 (in Ukrainian). https://doi.org/10.15222/TKEA2020.3-4.35

4. Ursaki A. Development of chip-on-board LED modules by the example of matrix evolution from citizen electronics. Sovremennaja svetoteknika. 2018. No. 2. P. 20-22 (in Russian).

5. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. et al. Electro-optical characteristics of an innovative LED luminaire with an LED matrix cooling system based on heat pipes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2020. 23, No 4. P. 415-423. https://doi.org/10.15407/spqeo23.04.415

6. Li J., Tian W., Lv L. A thermosyphon heat pipe cooler for high power LEDs cooling. Heat Mass Transfer. 2015. 52, No 8. P. 1541-1548. https://doi.org/10.1007/s00231-015-1679-z

7. Kiseev V., Sazhin O. Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid. Int. J. Heat Mass Transfer. 2019. 132. P. 557-564. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.109

8. Nikolaenko Yu.E., Pekur D.V., Sorokin V.M. Light characteristics of high-power LED luminaire with a cooling system based on heat pipe. SPQEO. 2019. 22, No 3. Ð. 366-371. https://doi.org/10.15407/spqeo22.03.366

9. Pekur D.V., Nikolaenko Yu.E., Sorokin V.M. Optimization of the cooling system design for a compact high-power LED luminaire. SPQEO. 2020. 23, No 1. P. 91-101. https://doi.org/10.15407/spqeo23.01.091

10. Sosoi G., Vizitiu R.S., Burlacu A., Galatanu C.D. A heat pipe cooler for high power LED's cooling in harsh conditions. Proc. Manufacturing. 2019. 32. P. 513-519. https://doi.org/10.1016/j.promfg.2019.02.247

11. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. Thermal characteristics of a compact LED luminaire with a cooling system based on heat pipes. Therm. Sci. Eng. Progress. 2020. 18. Art. No 100549. https://doi.org/10.1016/j.tsep.2020.100549

12. Prisniakov K., Marchenko O., Melikaev Yu., Kravetz V., Nikolaenko Yu., Prisniakov V. About ñomplex influence of vibrations and gravitational fields on serviceability of heat pipes in composition of the space-rocket systems. 54th Intern. Astronaut. Congress of the Intern. Astronautical Federation (IAF), the Intern. Academy of Astronautics and the Intern. Institute of Space Law, Intern. Astronaut. Congress (IAF). Bremen, Germany. 2003. 1. P. 1571-1580. https://doi.org/10.2514/6.IAC-03-I.1.10

13. Kim J.-S., Bae J.-Y., Kim E.-P. Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe. J. Korean Soc. Marine Eng. 2015. 39, No. 8. Ð. 801-806. https://doi.org/10.5916/jkosme.2015.39.8.801

14. Babaev V.M., Govorov P.P., Govorov V.P., Korol O.V. Energy saving in the systems of heat supply and lighting of buildings. Budivelni konstrukcii. 2013. Issue 77. P. 169-173 (in Ukrainian).

15. Nikolaenko Yu.E., Kravets V.Yu., Naumova A.N., Baranyuk A.V. Development of the ways to increase the lighting energy efficiency of living space. Int. J. Energy Clean Environment. 2017. 18, No 3. P. 275-285. https://doi.org/10.1615/InterJEnerCleanEnv.2018021641

16. Chiradeja P., Yoomak S. & Ngaopitakkul A. Economic analysis of improving the energy efficiency of nanogrid solar road lighting using adaptive lighting control. IEEE Access. 2020. 8. P. 202623-202638. https://doi.org/10.1109/ACCESS.2020.3035702

17. Kolomzarov Yu.V., Kostylyov V.P., Sorokin V.M. et al. Environmental issues of lighting and prospects of energy saving LED lighting systems with combined power supply. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2020. No 5-6. P. 3-9. (in Ukrainian) https://doi.org/10.15222/TKEA2020.5-6.03

18. Borkowski P., Pawlowski M. Zasilanie energooszczednych zrodel swiatla poprzez systemy zasobnikowe. Przeglad Elektrotechniczny. 2013. 89, No 1A. P. 21-24.

19. Pekur D.V., Kolomzarov Yu.V., Kostylyov V.P. et al. Supercapacitor energy storage systems for lighting systems with combined power supply. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2021. No 1-2. P. 3-9 (in Ukrainian). https://doi.org/10.15222/TKEA2021.1-2.03

20. Applied Photovoltaics. Eds S.R. Wenham, M.A. Green, M.E. Watt, R. Corkish. 2nd edition. Routledge, 2006.

21. Practical Handbook of Photovoltaics: Fundamentals and Applications. Eds A. McEvoy, T. Markvart and L. Castaner. Amsterdam, Elsevier, 2012. 22. https://si-datastore.s3.us-west-2.amazonaws.com/documents/mYPaaJCiWlUavDddNwF5M3FnnBf35kzFsONw7xH0.pdf

(reference date: 08.02.2021). 23. ASTM G173 - 03(2020) Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. https://www.nrel.gov/grid/solar-resource/spectra.html (reference date: 08.02.2021).

24. Muzathik A.M. Photovoltaic modules operating temperature estimation using a simple correlation. Int. J. Energy Eng. 2014. 4, No 4. P. 151-158.

25. Hohm D.P. and Ropp M.E. Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed. 28th IEEE Photovoltaic Spe-cialists Conference - 2000 (Cat. No.00CH37036). Anchorage. AK. USA. 2000. P. 1699-1702.

26. Mei Q., Shan M., Liu L., Guerrero J.M. A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Trans. Industr. Electron. 2011. 58, No 6. P. 2427-2434. https://doi.org/10.1109/TIE.2010.2064275

27. Chen Y.-T., Lai Z.-H., Liang R.-H. A novel auto-scaling variable step-size MPPT method for a PV system. Sol. Energy. 2014. 102. 247-256. https://doi.org/10.1016/j.solener.2014.01.026

28. Ouoba D., Fakkar A., El Kouari Y. et al. An im-proved maximum power point tracking method for photovoltaic system. Opt. Mater. 2016. 56. P. 100- 106. https://doi.org/10.1016/j.optmat.2016.01.026

29. Ahmed E.M., Shoyama M. Highly efficient variable-step-size maximum power point tracker for PV systems. 3rd International Symposium on Electrical and Electronic Engineering (ISEEE). 16-18 September 2010. P. 112-117. https://doi.org/10.1109/ISEEE.2010.5628532

30. Prodic A., Maksimovic D. Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters. 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proc. IEEE. Mayaguez, PR, USA. P. 18-22.

31. Santibanez V., Camarillo K., Moreno-Valenzuela J., Campa R. A practical PID regulator with bounded torques for robot manipulators. Int. J. Control, Automation and Systems. 2010. 8, No 3. P. 544-555. https://doi.org/10.1007/s12555-010-0307-4

32. Microchip Technology Inc. https://www.microchip.com/wwwproducts/en/PIC16F1829 (reference date: 08.02.2021).

33. Berrueta A., Ursua A., Martin I.S., Eftekhari A., Sanchis P. Supercapacitors: electrical characteristics, modeling, applications, and future trends. IEEE Access. 2019. 7. P. 50869-50896. https://doi.org/10.1109/ACCESS.2019.2908558