Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 121-136 (2022).
DOI: https://doi.org/10.15407/spqeo25.02.121


References

1. Auston D.H., Cheung K.P., and Smith P.R. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 1984. 45, No 3. P. 284-286. https://doi.org/10.1063/1.95174

2. Berry C.W. and Jarrahi M. Terahertz generation using plasmonic photoconductive gratings. New J. Phys. 2012. 14. P. 105029. https://doi.org/10.1088/1367-2630/14/10/105029

3. Castro-Camus E. and Alfaro M. Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited]. Photon. Res. 2016. 4, No 3. P. A36-A42. https://doi.org/10.1364/PRJ.4.000A36

4. Apostolopoulos V. and Barnes M.E. THz emitters based on the photo-Dember effect. J. Phys. D: Appl. Phys. 2014. 47. P. 374002. https://doi.org/10.1088/0022-3727/47/37/374002

5. Sakai K. and Tani M. Terahertz Optoelectronics (Topics in Applied Physics, vol. 97). Ed. K. Sakai. Berlin, Springer. 2005. P. 1-31. https://doi.org/10.1007/b80319

6. Melentev G.A., Shalygin V.A., Vorobjev L.E. et al. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation. J. Appl. Phys. 2016. 119. P. 093104. https://doi.org/10.1063/1.4943063

7. Jakstas V., Grigelionis I., Janonis V. et al. Electrically driven terahertz radiation of 2DEG plasmons in AlGaN/GaN structures at 110 K temperature. Appl. Phys. Lett. 2017. 110. P. 202101. https://doi.org/10.1063/1.4983286

8. Shalygin V.A., Moldavskaya M.D., Vinnichenko M.Y. et al. Selective terahertz emission due to electrically excited 2D plasmons in AlGaN/GaN heterostructure. J. Appl. Phys. 2019. 126. P. 183104. https://doi.org/10.1063/1.5118771

9. Laurent T., Sharma R., Torres J. et al. Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure. Appl. Phys. Lett. 2011. 99. P. 082101. https://doi.org/10.1063/1.3627183

10. Persano A., Torres J., Korotyeyev V.V. et al. On the transmission of terahertz radiation through silicon-based structures. J. Appl. Phys. 2014. 116. P. 044504. https://doi.org/10.1063/1.4890836

11. Rogalski A., Sizov F. Terahertz detectors and focal plane arrays. Opto-Electron. Rev. 2011. 19, No 3. P. 346-404. https://doi.org/10.2478/s11772-011-0033-3 12. Minkeviius L., Qi L., Siemion A. et al. Titanium-based microbolometers: Control of spatial profile of terahertz emission in weak power sources. Appl. Sci. 2020. 10. P. 3400. https://doi.org/10.3390/app10103400

13. Knap W., Dyakonov M., Coquillat D. et al. Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Milli Terahz Waves. 2009. 30. P. 1319-1337. https://doi.org/10.1007/s10762-009-9564-9

14. Veksler D., Aniel F., Rumyantsev S. et al. GaN heterodimensional Schottky diode for THz detec-tion, in: SENSORS, IEEE, 2006. P. 323-326. https://doi.org/10.1109/ICSENS.2007.355471

15. Minkeviius L., Tamosiunas V., Kasalynas I. et al. Terahertz heterodyne imaging with InGaAs-based bow-tie diodes. Appl. Phys. Lett. 2011. 99. P. 131101. https://doi.org/10.1063/1.3641907

16. van Exter M., Fattinger C., Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 1989. 14. P. 1128-1130. https://doi.org/10.1364/OL.14.001128

17. van Exter M., Grischkowsky D. Carrier dynamics of electrons and holes in moderately doped silicon. Phys. Rev. B. 1990. 41, No 17. P. 12140-12148. https://doi.org/10.1103/PhysRevB.41.12140

18. Guo H.C., Zhang X.H., Liu W., Yong A.M., Tang S.H. Terahertz carrier dynamics and dielectric properties of GaN epilayers with different carrier concentrations. J. Appl. Phys. 2009. 106. P. 063104. https://doi.org/10.1063/1.3212966

19. Ulbricht R., Hendry E., Shan J., Heinz T.F., Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 2011. 83, No 2. P. 543-586. https://doi.org/10.1103/RevModPhys.83.543

20. Lloyd-Hughes J., Jeon T.-I. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Milli Terahz Waves. 2012. 33. P. 871-925. https://doi.org/10.1007/s10762-012-9905-y

21. You D., Jones R.R., Bucksbaum P.H., Dykaar D.R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Opt. Lett. 1993. 18, No 4. P. 290-292. https://doi.org/10.1364/OL.18.000290

22. Kuehn W., Gaal P., Reimann K. et al. Terahertz-induced interband tunneling of electrons in GaAs. Phys. Rev. B. 2010. 82. P. 075204. https://doi.org/10.1103/PhysRevB.82.075204

23. Korotyeyev V.V., Kochelap V.A., Kim K.W. Electron transport in bulk GaN under ultrashort high-electric field transient. Semicond. Sci. Technol. 2011. 26. P. 105008. https://doi.org/10.1088/0268-1242/26/10/105008

24. Zhao X., Zhang J., Fan K. et al. Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited]. Photon. Res. 2016. 4, No 3. P. A16-A21. https://doi.org/10.1364/PRJ.4.000A16

25. Yan B., Fang J., Qin S. et al. Experimental study of plasmon in a grating coupled graphene device with a resonant cavity. Appl. Phys. Lett. 2015. 107. P. 191905. https://doi.org/10.1063/1.4935344

26. Qin H., Yu Y., Li X. et al. Excitation of terahertz plasmon in two-dimensional electron gas. Terahertz Science and Technology. 2016. 9, No 2. P. 71-81.

27. Korotyeyev V., Lyaschuk Yu., Kochelap V. et al. Interaction of sub-terahertz radiation with low-doped grating-based AlGaN/GaN plasmonic structures. Time-domain spectroscopy measurements and electrodynamic modeling. SPQEO. 2019. 22. P. 237-251. https://doi.org/10.15407/spqeo22.02.237

28. Pashnev D., Kaplas T., Korotieiev V. et al. Terahertz time-domain spectroscopy of two-dimensional plasmons in AlGaN/GaN hetero-structures. Appl. Phys. Lett. 2020. 117, No 5. P. 051105. https://doi.org/10.1063/5.0014977

29. Pashnev D., Korotyeyev V., Janonis V. et al. Experimental evidence of temperature dependent effective mass in AlGaN/GaN heterostructures observed via THz spectroscopy of 2D plasmons. Appl. Phys. Lett. 2020. 117. P. 162101. https://doi.org/10.1063/5.0022600

30. Otsuji T., Shur M. Terahertz plasmonics: Good results and great expectations. IEEE Microwave Mag. 2014. 15. P. 43-50. https://doi.org/10.1109/MMM.2014.2355712

31. Otsuji T., Karasawa H., Watanabe T. et al. Emission of terahertz radiation from two-dimen-sional electron systems in semiconductor nano-heterostructures. C. R. Physique. 2010. 11. P. 421-432. https://doi.org/10.1016/j.crhy.2010.04.002

32. Popov V.V., Fateev D.V., Otsuji T. et al. Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell. Appl. Phys. Lett. 2011. 99. P. 243504. https://doi.org/10.1063/1.3670321

33. Popov V.V. Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures. J. Infrared Milli Terahz Waves. 2011. 32. P. 1178-1191. https://doi.org/10.1007/s10762-011-9813-6

34. Lyaschuk Y.M., Korotyeyev V.V. Theory of detection of terahertz radiation in hybrid plasmonic structures with drifting electron gas. Ukr. J. Phys. 2017. 62, No 10. P. 889. https://doi.org/10.15407/ujpe62.10.0889

35. Jessop D.S., Kindness S.J., Xiao L. et al. Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz. Appl. Phys. Lett. 2016. 108. P. 171101. https://doi.org/10.1063/1.4947596

36. Mikhailov S.A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems. Phys. Rev. B 1998. 58. P. 1517. https://doi.org/10.1103/PhysRevB.58.1517

37. Petrov A.S., Svintsov D., Ryzhii V., Shur M.S. Am-plified-reflection plasmon instabilities in grating-gate plasmonic crystals. Phys. Rev. B. 2017. 95. P. 045405. https://doi.org/10.1103/PhysRevB.95.045405

38. Korotyeyev V.V., Kochelap V.A., Danylyuk S., Varani L. Spatial dispersion of the high-frequency conductivity of two-dimensional electron gas subjected to a high electric field: Collisionless case. Appl. Phys. Lett. 2018. 113. P. 041102. https://doi.org/10.1063/1.5041322

39. Korotyeyev V.V., Kochelap V.A. Plasma wave oscillations in a nonequilibrium two-dimensional electron gas: Electric field induced plasmon instability in the terahertz frequency range. Phys. Rev. B. 2020. 101. P. 235420. https://doi.org/10.1103/PhysRevB.101.235420

40. Withayachumnankul W., Naftaly M. Fundamentals of measurement in terahertz time-domain spectro-scopy. J Infrared Milli Terahz Waves. 2014. 35. P. 610-637. https://doi.org/10.1007/s10762-013-0042-z

41. Jepsen U. Phase retrieval in terahertz time-domain measurements: a how to tutorial. J. Infrared Milli Terahz Waves. 2019. 40. P. 395-411. https://doi.org/10.1007/s10762-019-00578-0

42. Ding S.-H., Li Q., Li Y.-D., Wang Q. Continuous-wave terahertz digital holography by use of a pyro-electric array camera. Opt. Lett. 2011. 36, No 11. P. 1993-1995. https://doi.org/10.1364/OL.36.001993

43. Petrov N.V., Kulya M.S., Tsypkin A.N. et al. Application of terahertz pulse time-domain holo-graphy for phase imaging. IEEE Trans. Terahertz Sci. Technol. 2016. 6, No 3. P. 464-471. https://doi.org/10.1109/TTHZ.2016.2530938

44. Naftaly M., Molloy J.F., Magnusson B. et al. Silicon carbide - a high-transparency nonlinear material for THz applications. Opt. Exp. 2016. 24, No 3. P. 2590. https://doi.org/10.1364/OE.24.002590

45. Bechhoefer J. Kramers-Kronig, Bode, and the meaning of zero. Am. J. Phys. 2011. 79. P. 1053-1059. https://doi.org/10.1119/1.3614039

46. Fateev D.V., Popov V.V., Shur M.S. Plasmon spectra transformation in grating-gate transistor structure with spatially modulated two-dimensional electron channel. Semiconductors. 2010. 44. P. 1455. https://doi.org/10.1134/S1063782610110059

47. Schaich W.L. Analysis of a special model for a grating coupler. Phys. Rev. B. 2000. 62, No 4. P. 2721 -2730. https://doi.org/10.1103/PhysRevB.62.2721

48. Lyaschuk Y.M., Korotyeyev V.V. Interaction of a terahertz electromagnetic wave with the plasmonic structure system grating-2D gas. Analysis of fea-tures of the near field. Ukr. J. Phys. 2014. 59, No 5. P. 495-504. https://doi.org/10.15407/ujpe59.05.0495

49. Muravjov A.V., Veksler D.B., Popov V.V. et al. Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl. Phys. Lett. 2010. 96. P. 042105. https://doi.org/10.1063/1.3292019