Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 164-156 (2022).
DOI: https://doi.org/10.15407/spqeo25.02.164
References
1. Khalilov R.I., Nasibova A.N. The endogenous EPR-detectable iron nanoparticles in plants. News Baku University. 2010. 3. P. 35-45.
2. Khalilov R.I., Nasibova A.N., Gasimov R.J. Magnetic nanoparticles in plants: EPR researches. News Baku University. 2011. 4. P. 56-62.
https://doi.org/10.1134/S000635091102014X
3. Khalilov R.I., Nasibova A.N., Serezhenkov V.A. et al. Accumulation of magnetic nanoparticles in plants grown on soils of Apsheron peninsula. Biophysics. 2011. 56. P. 316-322.
https://doi.org/10.1134/S000635091102014X
4. Khalilov R.I., Nasibova A.N., Youssef N. The use of EPR signals of plants as bioindicative parameters in the study of environmental pollution. International Journal of Pharmacy and Pharmaceutical Sciences. 2015. 7. P. 172-175.
5. Kavetskyy T.S., Voloshanska S.Ya., Sausa O., Stepanov A.L. Nanovoids topology in Juniperus communis of Carpathian region of Ukraine. In: Acta Carpathica. 16. Eds. J. Gasior, S.J. Woloszanska, B. Alvarez et al. Wydzial Biologiczno-Rolniczy Uniwersytetu Rzeszowskiego wspolnie z Wydzial Biologiczny Uniwersytetu Pedagogicznego w Drohobyczu, 2014. P. 79-84.
6. Kavetskyy T.S., Voloshanska S.Ya., Komar I.V. et al. Positron annihilation study of the Juniperus communis based biomaterial NEFROVIL. In: NATO Science for Peace and Security Series A: Chemistry and Biology "Nanoscience Advances in CBRN Agents Detection, Information and Energy Security". Eds. P. Petkov, D. Tsiulyanu, W. Ku-lisch, C. Popov. Springer, 2015. P. 61-64.
https://doi.org/10.1007/978-94-017-9697-2_6
7. Voloshanska S., Kozar M., Kavetskyy T. Biological activity and nanostructural characterization of Juni-perus communis and biomaterials on its basis: A short review. In: Acta Carpathica. 23. Eds. J. Gasior, S.J. Woloszanska, B. Alvarez et al. Wydzial Biologiczno-Rolniczy Uniwersytetu Rzeszowskiego wspolnie z Wydzial Biologiczny Uniwersytetu Pedagogicznego w Drohobyczu, 2015. P. 87-98.
8. Kavetskyy T., Khalilov R., Nasibova A., Serezhenkov V., Voloshanska S. EPR spectroscopy study of Juniperus communis of Carpathian region of Ukraine. In: Acta Carpathica. 24. Eds. J. Gasior, S.J. Woloszanska, B. Alvarez et al. Wydzial Biologiczno-Rolniczy Uniwersytetu Rzeszowskiego wspolnie z Wydzial Biologiczny Uniwersytetu Pedagogicznego w Drohobyczu, 2015. P. 124-129.
9. Kavetskyy T.S., Khalilov R.I., Voloshanska O.O. et al. Self-organized magnetic nanoparticles in plant systems: ESR detection and perspectives for biomedical applications. In: NATO Science for Peace and Security Series B: Physics and Biophysics "Advanced Nanotechnologies for Detection and Defence against CBRN Agents". Eds. P. Petkov, D. Tsiulyanu, C. Popov, W. Kulisch. Springer, 2018. P. 487-492.
https://doi.org/10.1007/978-94-024-1298-7_48
10. Dawson N.J., Katzenback B.A., Storey K.B. Free-radical first responders: The characterization of CuZnSOD and MnSOD regulation during freezing of the freeze-tolerant North American wood frog, Rana sylvatica. Biochim. Biophys. Acta. 2015. 1850. P. 97-106.
https://doi.org/10.1016/j.bbagen.2014.10.003
11. Morsy M.A., Khaled M.M. Novel EPR charac-terization of the antioxidant activity of tea leaves. Spectrochimica Acta, Part A. 2002. 58. P. 1271-1277
https://doi.org/10.1016/S1386-1425(01)00716-8
12. Chen Z., Yin J.-J., Zhou Y.-T. et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012. 6. P. 4001-4012.
https://doi.org/10.1021/nn300291r
13. Hayyan M., Ali Hashim M., AlNashef I.M. Superoxide ion: Generation and chemical implica-tions. Chem. Rev. 2016. 116. P. 3029-3085.
https://doi.org/10.1021/acs.chemrev.5b00407
14. Gupta R., Taguchi T., Lassalle-Kaiser B. et al. High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photo-system II. PNAS. 2015. 112, No 17. P. 5319-5324.
https://doi.org/10.1073/pnas.1422800112
15. Masallera J.R. New manganese complexes with nitrogen donors ligand. Catalysts for oxidation reaction. Doctoral Thesis. University of Girona. 2012.
16. Ito A., Shinkai M., Honda H., Kobayashi T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 2005. 100. P. 1-11.
https://doi.org/10.1263/jbb.100.1
17. Huber D.L. Synthesis, properties, and applications of iron nanoparticles. Small. 2005. 1. P. 482-501.
https://doi.org/10.1002/smll.200500006
18. Gupta A.K., Gupta M. Synthesis and surface engi-neering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005. 26. P. 3995-4021.
https://doi.org/10.1016/j.biomaterials.2004.10.012
19. Liu G., Men P., Harris P.L. et al. Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci. Lett. 2006. 406. P. 189-193.
https://doi.org/10.1016/j.neulet.2006.07.020
20. Hautot D., Pankhurst Q.A., Morris C.M. et al. Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim. Biophys. Acta. 2007. 1772. P. 21-25.
https://doi.org/10.1016/j.bbadis.2006.09.011
21. O'Grady K. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2009. 42. P. 220301.
https://doi.org/10.1088/0022-3727/42/22/220301
22. Berry C.C. Progress in functionalization of mag-netic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 2009. 42, P. 224003.
https://doi.org/10.1088/0022-3727/42/22/224003
23. Singha N., Jenkinsa G.J.S., Asadi R., Doak S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010. 1. P. 5358.
https://doi.org/10.3402/nano.v1i0.5358
24. Soenen S.J.H., De Cuyper M. Assessing iron oxide nanoparticle toxicity in vitro: Current status and future prospects. Nanomedicine. 2010. 5. P. 1261-1275.
https://doi.org/10.2217/nnm.10.106
25. Ankamwar B., Lai T.C., Huang J.H. et al. Biocom-patibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 2010. 21. P. 075102.
https://doi.org/10.1088/0957-4484/21/7/075102
26. Miller D.D. Food nanotechnology: New leverage against iron deficiency. Nat. Nanotechnol. 2010. 5. P. 318-319.
https://doi.org/10.1038/nnano.2010.91
27. Hilty F.M., Arnold M., Hilbe M. et al. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat. Nanotechnol. 2010. 5. P. 374-380. https://doi.org/10.1038/nnano.2010.79
https://doi.org/10.1038/nnano.2010.79
28. Zimmermann M.B., Hilty F.M. Nanocompounds of iron and zinc: their potential in nutrition. Nanoscale. 2011. 3. P. 2390-2398. https://doi.org/10.1039/c0nr00858c
https://doi.org/10.1039/c0nr00858c
29. Gubin S.P., Koksharov Y.A., Khomutov G.B., Yurkov G.Y. Magnetic nanoparticles: Preparation, structure and properties. Rus. Chem. Rev. 2005. 74, No 6. P. 489-520.
https://doi.org/10.1070/RC2005v074n06ABEH000897
30. Nasibova A.N., Khalilov R.I. Preliminary studies on generating metal nanoparticles in pomegranates (Punica Granatum) under stress. Int. J. Develop. Res. 2016. 6. P. 7071-7078.
31. Nasibova A.N., Fridunbayov I.Y., Khalilov R.I. Interaction of magnetite nanoparticles with plants. Europ. J. Biotechnol. Biosci. 2017. 5. P. 14-16.
32. Nasibova A., Khalilov R., Abiyev H. et al. Identification of the EPR signals of fig leaves (Ficus carica L.). Eurasian Chemical Communications. 2021. 3, No 3. P. 193-199.
| |
|
|