Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 173-178 (2022).
DOI: https://doi.org/10.15407/spqeo25.02.173


References

1. Guzik G.P., Stachowicz W., Michalik Ja. Chap. 6 in: Experimental Methods in the Physical Sciences. 50. P. 115-127. Elsevier Inc., 2019. https://doi.org/10.1016/B978-0-12-814024-6.00006-6

2. Harshman A., Toyoda Sh., Johnson T. Suitability of Japanese wild boar tooth enamel for use as an electron spin resonance dosimeter. Rad. Meas. 2018. 116. P. 46-50. https://doi.org/10.1016/j.radmeas.2018.07.001

3. Skinner A.R., Blackwell B.A.B., Chasteen N.D. et al. Improvements in dating tooth enamel by ESR. Applied Radiation and Isotopes. 2000. 52. P. 1337?1344. https://doi.org/10.1016/S0969-8043(00)00092-0

4. Sadlo J., Bugaj A., Strzelczak G. et al. Multi-frequency EPR study on radiation induced centers in calcium carbonates labeled with 13C. Nukleonika. 2015. 60. P. 429?434. https://doi.org/10.1515/nuka-2015-0076

5. Kinoshita A., Baffa O., Mascarenhas S. Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bombvictim. PLOS ONE. 2018. 1. P. 11. https://doi.org/10.1371/journal.pone.0192444

6. Yamaguchi I., Inoue K., Natsuhori M. et al. L-band electron paramagnetic resonance tooth dosimetry applied to affected cattle teeth in Fukushima. Appl. Sci. 2021. 11. P. 1187. https://doi.org/10.3390/app11031187

7. Ivanov D.V., Shishkina E.A., Osipov D.I. et al. Internal in vitro dosimetry for fish using hydroxyapatite-based EPR detectors. Radiation and Environmental Biophysics. 2015. 54. P. 257-263. https://doi.org/10.1007/s00411-015-0593-6

8. Bailiff I.K., Sholom S., Mc. Keever S.W.S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: a review. Rad. Meas. 2016. 94. P. 83?139. https://doi.org/10.1016/j.radmeas.2016.09.004

9. Oka T., Takahashi A., Koarai K. et al. External expo-sure dose estimation by electron spin resonance tech-nique for wild Japanese macaque captured in Fuku-shima prefecture. Rad. Meas. 2020. 134. P. 106315. https://doi.org/10.1016/j.radmeas.2020.106315

10. Williams B.B., Flood A.B., Salikhov I. et al. In vivo EPR tooth dosimetry for triage after a radiation event involving large populations. Radiation and Environmental Biophysics. 2014. 53. P. 335-346. https://doi.org/10.1007/s00411-014-0534-9

11. Joannes-Boyau R. Detailed protocol for an accurate non-destructive direct dating of tooth enamel fragment using Electron Spin Resonance. Geochronometria. 2013. 40. P. 322-333. https://doi.org/10.2478/s13386-013-0132-7

12. Duval M. Electron Spin Resonance Dating of Fossil Tooth Enamel Encyclopedia of Scientific Dating Methods. Springer, 2015. https://doi.org/10.1007/978-94-007-6304-3_71

13. Azevedo R.L., Asfora V.K., Mutzenberg D.S. et al. ESR dating of megafauna enamel teeth from Lagoa Uri de Cima Archaeological Site (Pernambuco, North-eastern Brazil). Quaternary International. 2020. 556. P. 38?48. https://doi.org/10.1016/j.quaint.2019.02.039

14. Ishchenko S.S., Vorona I.P., Okulov S.M., Baran N.P. 13C hyperfine interactions of CO2? in irradiated tooth enamel as studied by EPR. Applied Radiation and Isotopes. 2002. 56. P. 815?819. https://doi.org/10.1016/S0969-8043(02)00049-0

15. Rudko V.V., Vorona I.P., Baran N.P., Ishchenko S.S. ?- and UV-induced CO2? radicals in tooth enamel. Rad. Meas. 2007. 42. P. 1181?1184. https://doi.org/10.1016/j.radmeas.2007.05.017

16. Vorona I.P., Ishchenko S.S., Baran N.P., Petrenko T.L., Rudko V.V. Evidence of annealing-induced transformation of CO2? radicals in irradiated tooth enamel. Rad. Meas. 2006. 41. P. 577?581. https://doi.org/10.1016/j.radmeas.2005.12.002

17. Nosenko V.V., Vorona I.P., Baran N.P. et al. Com-parative EPR study CO2? radicals in modern and fossil tooth enamel. Rad. Meas. 2015. 78. P. 53?57. https://doi.org/10.1016/j.radmeas.2014.09.004

18. Galtsev V.E., Grinberg O.Ya., Lebedev Ya.S., Galtseva E.V. EPR dosimetry sensitivity enhance-ment by detection of rapid passage signal of the tooth enamel at low temperature. Appl. Magn. Reson. 1993. 4. P. 331?333. https://doi.org/10.1007/BF03162506

19. Deng Y., Pandian R.P., Ahmad R., Kuppusamy P., Zweier J.L. Application of magnetic field over-modulation for improved EPR linewidth measurements using probes with Lorentzian lineshape. J. Magn. Reson. 2006. 181. P. 254?261. https://doi.org/10.1016/j.jmr.2006.05.010

20. Hyde J.S., Mett R.R. EPR uniform field signal enhancement by dielectric tubes in cavities. Appl. Magn. Reson. 2017. 48. P. 1185?1204. https://doi.org/10.1007/s00723-017-0935-4

21. Elnaggar S.Y., Tervo R., Mattar S.M. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory. J. Magn. Reson. 2014. 238. P. 1?7. https://doi.org/10.1016/j.jmr.2013.10.016

22. Sebastian M.T., Ubic R., Jantunen H. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 2015. 60. P. 392?412. https://doi.org/10.1179/1743280415Y.0000000007

23. Syryamina V.N., Matveeva A.G., Vasiliev Ya.V. et al. Improving B1 field homogeneity in dielectric tube resonators for EPR spectroscopy via controlled shaping of the dielectric insert. J. Magn. Reson. 2020. 311. P. 106685. https://doi.org/10.1016/j.jmr.2020.106685

24. Elnaggar S.Y., Tervo R., Mattar S.M. General expres-sions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory. J. Magn. Reson. 2014. 242. P. 57?66. https://doi.org/10.1016/j.jmr.2014.01.018

25. Junwang G., Qingquan Yu., Jianbo C. et al. New developed cylindrical TM010 mode EPR cavity for X-band in vivo tooth dosimetry. PLOS ONE. 2014. 9. P. e106587. https://doi.org/10.1371/journal.pone.0106587

26. Lemishko S.V., Vorona I.P., Golovina I.S. et al. Development and characterization of ceramic inserts used in metallic resonators of EPR spectrometers to increase their sensitivity. Ukr. J. Phys. 2021. 66. P. 497?502. https://doi.org/10.15407/ujpe66.6.497

27. Tatsumi-Miyajima J. ESR dosimetry for atomic bomb survivors and radiologic technologists. Nucl. Instr. & Meth. 1987. A257. P. 417?422 https://doi.org/10.1016/0168-9002(87)90767-4

28. Solopan S., Yukhymchuk V., Vorona I. et al. Dielectric materials for enhancement of the sensitivity of electron paramagnetic resonance spectroscopy. Mater. Sci. Eng. B: Solid-State Mater. for Adv. Technol. 2021. 272. P. 115303. https://doi.org/10.1016/j.mseb.2021.115303

29. De T., Romanyukha A., Trompier F. et al. Feasibility of Q-band EPR dosimetry in biopsy samples of dental enamel, dentine and bone. Appl. Magn. Reson. 2013. 44. P. 375?387. https://doi.org/10.1007/s00723-012-0379-9

30. Vorona I.P., Baran N.P., Ishchenko S.S. EPR study of CO2? radicals by ?- and UV-radiation in bioapatites. Ukr. J. Phys. 2002. 47. P. 659?663.

31. Vorona I.P., Baran N.P., Ishchenko S.S. et al. CO2? radicals in synthetic hydroxyapatite. Physics of the Solid State. 2008. 50. P. 1852?1856. https://doi.org/10.1134/S1063783408100119

32. Brik A., Haskell E., Brik V. et al. Anisotropy effects of EPR signals and mechanisms of mass transfer in tooth enamel and bones. Applied Radiation and Isotopes. 2000. 52. P. 1077?1083. https://doi.org/10.1016/S0969-8043(00)00047-6