Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 196-202 (2022).
DOI: https://doi.org/10.15407/spqeo25.02.196
References
1. Feng M., Holonyak N., Jr., and Hafez W. Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors. Appl. Phys. Lett. 2004. 84, No 1. P. 151-153.
https://doi.org/10.1063/1.1637950
2. Feng M. Holonyak, N., Jr. The transistor laser. IEEE Spectrum. 2006. 43, No 2. P. 50-55.
https://doi.org/10.1109/MSPEC.2006.1584362
3. Feng M., Qiu J., Wang C.Y., and Holonyak N., Jr. Tunneling modulation of a quantum-well transistor laser. J. Appl. Phys. 2016. 120. P. 204501.
https://doi.org/10.1063/1.4967922
4. Liang S., Qiao L., Han L. et al. Transistor laser with a current confinement aperture in the emitter ridge. IEEE Electron Device Lett. 2015. 36, Issue 10. P. 1063-1065.
https://doi.org/10.1109/LED.2015.2467182
5. Taghavi I., Kaatuzian H., Leburton J.-P. Bandwidth enhancement and optical performances of multiple quantum well transistor lasers. J. Appl. Phys. 2012. 100. P. 231114.
https://doi.org/10.1063/1.4727898
6. Taghavi I., Kaatuzian H., Leburton J.-P. Perfor-mance optimisation of multiple quantum well tran-sistor laser. IEEE J. Quantum Electron. 2013. 49. P. 426.
https://doi.org/10.1109/JQE.2013.2250488
7. Lia Y., Leburton J.-P. Base transport factor and frequency response of transistor lasers. J. Appl. Phys. 2019. 126. P. 153103. https://doi.org/10.1063/1.5099041
8. Basu R., Mukhopadhyay B., Basu P.K. Modeling resonance-free modulation response in transistor lasers with single and multiple quantum wells in the base. IEEE Photonics Journal. 2012. 4, No 5. P. 1572-1581.
https://doi.org/10.1109/JPHOT.2012.2211075
9. Eladl Sh.M., Saad M.H. Analysis of a quantum well structure optical integrated device. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2017. 20, No 2. P. 204-209.
https://doi.org/10.15407/spqeo20.02.204
10. Kaatuzian H., Mojaver H.R., Taghavi I. Optical modulation bandwidth enhancement of heterojunction bipolar transistor lasers using base width variation. Int. Conf. 2011 Numerical Simulation of Optoelectronic Devices. 2011. P. 75-76.
https://doi.org/10.1109/NUSOD.2011.6041145
11. Tan F., Bambery R., Feng M., Holonyak N., Jr. Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation. Appl. Phys. Lett. 2011. 99. P. 061105.
https://doi.org/10.1063/1.3622110
12. Tan F., Bambery R., Feng M., Holonyak N., Jr. Relative intensity noise of a quantum well transistor laser. Appl. Phys. Lett. 2012. 101. P. 151118.
https://doi.org/10.1063/1.4760225
13. Lenstra D., Fischer A.P.A., Ouirimi A. et al. Organic diode laser dynamics: Rate-equation model, reabsorption, validation and threshold predictions. Photonics. 2021. 8, No 7. P. 279.
https://doi.org/10.3390/photonics8070279
14. Deziel J.-L., Dube L.J., Varin C. Dynamical rate equation model for femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B. 2021. 104. P. 045201.
https://doi.org/10.1103/PhysRevB.104.045201
15. Ranjan R., Pareek P., Das M.K., Pandey S.K. Numerical design and frequency response of MQW transistor lasers based entirely on group IV alloys. J. Comput. Electron. 2021. 20. P. 1760-1768.
https://doi.org/10.1007/s10825-021-01732-5
16. Ramya R., Pirarmasubramanian S. Effect of Franz-Keldysh absorption on the short optical pulse generation in Transistor Laser. J. Opt. Commun. 2020. 474, No 1. P. 126087.
https://doi.org/10.1016/j.optcom.2020.126087
17. Zhang Z., Han H., Tian W. et al. A fully stabilized low phase noise Kerr lens mode locked Yb:CYA laser frequency comb with an average power of 1.5 W. Appl. Phys. B. 2020. 126. Article No 134.
https://doi.org/10.1007/s00340-020-07485-6
| |
|
|