Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (2) P. 211-218 (2022).
DOI: https://doi.org/10.15407/spqeo25.02.211


References

1. McManamon P.F. Review of ladar: a historic, yet emerging, sensor technology with rich phenome-nology. Opt. Eng. 2012. 51, No 6. P. 060901-1-13. https://doi.org/10.1117/1.OE.51.6.060901

2. Steinvall O. Active spectral imaging and mapping. Adv. Opt. Techn. 2014. 3, No 2. P. 161-178. https://doi.org/10.1515/aot-2013-0064

3. Johnson B., Joseph R., Nischan M. et al. A compact, active hyperspectral imaging system for the detec-tion of concealed targets. SPIE Conf. on Detection and Remediation Technologies for Mines and Mine-like Targets IV, April 1999. Proc. SPIE. 3710. P. 144-153. https://doi.org/10.1117/12.357002

4. Manninen A., Kaariainen T., Parviainen T. et al. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source. Opt. Exp. 2014. 22, Issue 6. P. 7172-7177. https://doi.org/10.1364/OE.22.007172

5. Liu Y., Tao Z., Zhang J. et al. Deep-learning-based active hyperspectral imaging classification method illuminated by the supercontinuum laser. Appl. Sci. 2020. 10, Issue 9. P. 3088(1-17). https://doi.org/10.3390/app10093088

6. Guo Z., Liu Y., Zheng X., Yin K. Active hyper-spectral imaging with a supercontinuum laser source in the dark. Chinese Phys. B. 2019. 28, No 3. P. 034206. https://doi.org/10.1088/1674-1056/28/3/034206

7. Hempler N., Nicholls J., Malcolm G. Active hyperspectral sensing and imaging for remote spectroscopy applications. Laser Focus World. 2013. 49, No 11. http://www.laserfocusworld.com/articles/print/volume-49/issue-11/features/spectral-imaging-active-hyperspectral-sensing-and-imaging-for-remote-spectroscopy-applications.html

8. El Fakir C., Poffo L., Billiot B. et al. Active hyperspectral mid-infrared imaging based on widely tunable QCL laser. In: 2019 21st Int. Conf. on Transparent Optical Networks (ICTON), 2019 Jule 9. IEEE. P. 1-4. https://doi.org/10.1109/ICTON.2019.8840448

9. El Fakir C., Hjeij M., Le Page R. et al. Active hyperspectral mid-infrared imaging based on a widely tunable quantum cascade laser for early detection of plant water stress. Opt. Eng. SPIE. 2021. 60, Issue 2. P. 023106-1-023106-15. https://doi.org/10.1117/1.OE.60.2.023106

10. Kupchenko L.F., Karlov V.D., Rybiak A.S. et al. Añtive electro-optical system of targets detection with dynamic spectral processing of optical radiation. SPQEO. 2021. 24, No 2. P. 218-226. https://doi.org/10.15407/spqeo24.02.218

11. Kupchenko L.F., Goorin O.A., Karlov V.D. et al. Active electro-optical system with dynamic spectral processing of optical radiation. In: 2019 IEEE 8th Int. Conf. on Advanced Optoelectronics and Lasers (CAOL). Proc. Sozopol, Bulgaria, 6-8 September 2019. IEEE. P. 489-492. https://doi.org/10.1109/CAOL46282.2019.9019458

12. Griffin M.K., Burke H.K. Compensation of hyperspectral data for atmospheric effects. Lincoln Laboratory Journal. 2003. 14, No 1. P. 29-54.

13. Christnacher F., Schertzer S., Metzger N. et al. Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments. Opt. Exp. 2015. 23, Issue 26. P. 32897-32908. https://doi.org/10.1364/OE.23.032897

14. Schott J.R. Remote Sensing the Image Chain Approach, 2nd ed. Oxford University Press, 2007.

15. Holst G.C. Electro-Optical Imaging System Performance, 6th ed. SPIE Press Book, 2017. https://doi.org/10.1117/3.2588947.ch2