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Abstract. Cu–Al–O thin films were grown on Si (111) substrates by using the reactive ion-
beam sputtering (RIBS) method within the temperature range 80 to 380 °C. The effect of 
thermal annealing of Cu–Al–O films under various regimes of cooling on the 
microstructure, morphology, optical properties and photocatalytic activity were examined. 
The properties of annealed Cu–Al–O films were studied using atomic force microscope 
(AFM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared 
spectrometry (FTIR). The X-ray diffraction patterns show appearance only CuAl2O4 phase 
after thermal annealing of Cu–Al–O thin films at 900 °C. Raman scattering confocal 
measurements have also confirmed the presence of CuO phases in annealed Cu–Al–O 
samples. AFM results have indicated that the greatest RMS roughness is observed in 
CuAl2O4 films after temperature annealing under the fast cooling regime. Photodegradation 
of CuAl2O4 films was investigated using methyl orange as model pollutant. Present results 
indicate that CuAl2O4 photocatalysts are potential candidate for the practical application in 
photocatalytic degradation of organic compounds.  
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1. Introduction 

The copper aluminate nanocomposites have attracted a 
great interest due to their low cost, thermal stability, non-
toxic, high electrical and optical resistance characteristics 
that make them promising for various applications in 
microelectronics (optical, electronic and magnetic 
devices) up to catalysis and biosensors [1–3]. The ternary 
oxide copper aluminate (CuAl2O4) is p-type 
semiconductor with a bandgap 1.77...2.3 eV [4], which 
can be used as a potential photocatalyst for degrading 
toxic water-soluble organic dyes within the range of 
visible  
light [5]. Such properties of copper aluminate as 
hydrophobicity, low surface acidity make them 
promising catalytic or carrier materials for substituting 
the more traditional systems [6].  

These properties can be used, for example, to 
decompose methyl orange (MO). It is an organic azo dye 
widely used in various branches of industry, for example, 
printing, textile and photography. Its release into 

environment is not only toxic to aquatic life, but it is 
carcinogenic to humans. The removal of azo dyes is of 
great significance to water purification. In the recent 
years, photocatalytic degradation was attractive as a 
promising tool for removal of azo dyes and organic 
impurities from waste water. Photocatalytic materials 
could effectively eliminate many stable non-
biodegradable dyes, as compared with the traditional 
method of processing [7]. 

The main scientific and technological challenge is 
deposition of CuAl2O4 films with a good quality and 
homogeneity. Earlier, CuAl2O4 films were tried to be 
deposited using several methods, namely: magnetron 
sputtering [4], pulsed laser deposition [8], plasma-
enhanced chemical vapour deposition [9, 10], and sol-gel 
method [11]. However, all these contain additional 
unwanted oxide phases. In recent years, the reactive ion-
beam sputtering (RIBS) method becomes attractive 
technique for growing the films, because of its 
advantages of producing pure and ultrafine films at low 
temperatures. It is considered to be the most interesting 
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growth method due to a good adhesion of coatings, its 
high deposition rates, film uniformity over large areas 
and very smooth surface of deposited films, which is 
very important for the optoelectronic applications. 
However, the researches devoted to deposition of 
CuAl2O4 films by using the RIBS method are known up 
to now.  

It is very important to pay attention to the topical 
problem of deposition single-phase materials in  
Cu–Al–O system that is inclined to easy formation of 
thermodynamically stable unwanted phases such as 
Cu2O, CuO, Al2O3 [12]. Our previous investigation [13] 
was devoted to the substrate temperature influence on the 
structure, elemental composition, morphology and 
optical properties of CuAlO2 thin films deposited on Si 
(111) and glass substrates by using the RIBS method. 
The influence of such technological approach as the 
cooling regime after thermal annealing in the ambient 
atmosphere on the structural, optical and catalytic 
properties for CuAl2O4 films grown using the RIBS 
method has not been studied yet in details.  

Therefore, the main purpose of this paper is to 
demonstrate the influence of the thermal annealing in air 
and regimes of cooling rate on the microstructure, 
elemental composition, and optical properties of  
Cu–Al–O thin films and on the photocatalytic 
performance of the synthesized CuAl2O4 films for the case 
of degradation of methyl orange. 

2. Experimental procedure 
2.1. Sample preparation 
The reactive ion-beam sputtering method of floatable 
alloyed Al–Cu target (with the purity 99.99 at.%) with 
atomic ratio of 1:1 was used for growing Al–Cu–O films 
on Si (111) substrates. In our experiments, such 
parameters as oxygen-argon composition in vacuum 
chamber (1:3) with pressure 4·10–4 Torr, accelerating 
voltage 5 kV, beam current 125 mA, target-substrate 
distance 3 cm and deposition time 90 min were fixed. 
The substrate temperature was in the range 80...380 °C 
with the step close to 50 °C. After that, the obtained films 
were annealed at 900 °C for 3 hours under ambient 
conditions. The first series was cooled in the regime of 
slow rate (for 3 h), and the second one was done at the 
fast rate regime (for 15 min). 

2.2. Characterization  
The structure of the films was investigated using the 
DRON-3M diffractometer, equipped with a scanning and 
recording computer system of the diffraction pattern by 
using the Bragg–Brentano focusing with monochromatic 
Cu-Kα radiation. The surface morphology of deposited 
films was studied using the atomic force microscope 
(AFM) (Quadrexed NanoScope IIIa Dimension 3000, 
Digital Instruments / Bruker, USA) in the tapping mode. 
The elemental analysis was carried out using the 
scanning electron microscope (SEM) ZEISS EVO 50 
XVP SEM using the energy dispersive X-ray (EDX) 
spectrum  analyzer  INCA 450  (OXFORD  Instruments).  

Fourier transform infrared spectrometry (FTIR) was 
carried out using the IR microscope Nicolet 6700 
equipped with a motorized objective table. The 
transmittance of the methyl orange solution was 
measured with the spectrophotometer based on LOMO 
MDR12 equipped with Hamamatsu detector S1336. 

2.3. Photocatalytic experiment 

The photocatalytic activities of the rapidly cooled  
Cu–Al–O films were investigated for degradation of MO 
used as a model waste water contaminant. MO has two 
absorption peaks in distilled water at 270 and 465 nm, 
respectively. The absorbance at 465 nm was chosen to 
monitor the effect of photocatalysis on the degradation of 
MO, because it was conformed to the Lambert–Beer law 
at concentrations ranging between 2·10−3 and 1·10−5 M 
[14]. The initial concentration of MO was chosen 
3·10−5 M as optimal. For experiments, the Si wafers 
covered by CuAl2O4 films with area near of 1×1 cm2 
were immersed in 3 mL of aqueous solution of MO. 
Before illumination, the investigated CuAl2O4 films hold 
in MO aqueous solution for 30 min in the dark to achieve 
an adsorption–desorption equilibrium. Then, the CuAl2O4 
films were exposed to UV Hg lamp having the electric 
power 200 W for 3, 6, 9, 12 h. The change in the 
concentration in each degraded solution was monitored 
by measuring the transmittance of MO aqueous solution 
at the wavelength 465 nm. The distilled water was used 
as the reference sample. 

3. Results and discussion 

The influence of substrate temperature on the elemental 
distribution of as-grown Cu–Al–O films is shown in 
Fig. 1. It was found that Al/Cu atomic ratio in our  
Cu–Al–O films gradually increases from 1.49 up to 3.18 
with increasing substrate temperature from 80 to 380 °C. 
The increase of Al/Cu atomic ratio favors formation of 
highly pure CuAlO2 or CuAl2O4 films, while its decrease 
leads to formation of CuAlO2 films with the additional 
CuO phase that was confirmed by XRD in [15] for the 
samples annealed at 900 and 950 °C. The paper [15] also 
implies that diffusion of CuO into the Al2O3 matrix 
occurs slowly at low growth temperatures. 
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Fig. 1. Dependence of elemental content on the substrate 
temperature in the as-grown Al–Cu–O films. 
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Fig. 2. X-ray diffraction patterns of the annealed CuAl2O4 films 
deposited on Sі at diverse substrate temperatures and cooled at 
fast regime (a) and slow regime (b). (Color online) 
 
 

The crystallinity and Al/Cu atomic ratio in the films 
was significantly improved, when the temperature was 
raised to 380 °C. Improvement of the technological 
parameters for RIBS is necessary to obtain single-phase 
Cu–Al–O films. The effect of different regimes for cooling 
rate after annealing at 900 °C on the structure of Cu–Al–O 
films was studied by XRD measurements (Figs 2a and 2b). 
It was found that the films deposited at substrate 
temperature within the range 80 to 380 °C and then 
annealed at the temperature 900 °C are composed of 
crystalline CuAl2O4 [16] in accord with JCPDS cards 
number 78-1605. XRD measurements have confirmed 
single-phase formation of CuAl2O4 with the XRD 
diffraction peaks from (220), (311), (400), (422), (511) and 
(440) planes [17]. It is worth to note that no additional 
peaks of any other phases were found in the XRD pattern 
corresponding to the films under study. When increasing 
the substrate temperature up to 280…380 °C, the 
corresponding diffraction peaks (220), (311) become 
stronger, apparently, due to the growth of crystallites [18].  

FTIR spectroscopy is a useful method for studying 
films composition [19]. FTIR studies were carried out in 
the reflection mode, because Si substrates were not 
transparent. The FTIR spectra of annealed at 900 °C  
Al–Cu–O films that were previously grown at diverse 
substrate temperatures are presented in Fig. 3. The faint 
absorption peak  around  3100...3500 cm−1 was caused by  
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Fig. 3. The observed FTIR spectra of annealed Al–Cu–O films 
deposited at diverse substrate temperatures in the following 
regimes: fast cooling; slow cooling. 

 
 

the OH longitudinal vibrations of the adsorbed water 
molecules. The broad band below 1000 cm–1 is attributed 
to the characteristic metal-oxygen vibrations in the  
Cu–Al–O films [20]. The appearance of additional 
metal–oxygen stretching frequencies within the range 
550...850 cm−1 for annealed films is associated with the 
vibrations of Cu–O, Al–O, and Cu–O–Al bonds [21] or 
Al–O–Al longitudinal vibrations in CuAl2O4 [17]. The 
absorption peaks in the spectral range around 1300 and 
2900 cm–1 are attributed to vibrations of Si–O bonds and 
associated with chemisorbed organic contaminations on 
the films’ surface [22]. 

The film surface morphology and roughness were 
characterized using AFM. To characterize the surface 
roughness, we used the root mean square (RMS) value in 
nanometer determined from 2.5×2.5 μm AFM images. 
Fig. 4 demonstrates that annealed films have a very 
uniform surface. The grain size decreases from 55…60 
down to 38…40 nm with increasing the substrate 
temperatures (Fig. 5a). The calculated by Gwyddion 
software RMS roughness of CuAl2O4 films increases 
with substrate temperature enhancement from 80 °C up 
to 380 °C: for as-grown samples from 0.39 up to 
1.37 nm; for annealed slowly cooled samples from 2.81 
up to 6.67 nm and fast cooled from 3.29 up to 14.73 nm. 
These results have indicated that the greatest RMS 
roughness observed in CuAl2O4 films after temperature 
annealing in the fast cooling regime. 
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Fig. 4. AFM 3D images of surface morphology for annealed Cu–Al–O films deposited at 80, 180, 280, and 380 °C. 
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Fig. 5. Temperature dependences of (a) grain sizes (■ – slow 
cooled, ○ – fast cooled) and (b) RMS values (■ – as-grown,  
○ – slow cooled,    – fast cooled) of annealed CuAl2O4 films. 
 
 

The Raman spectroscopy is a powerful method for 
the characterization of chemical and crystal structure and 
phase evolution for thin films. Fig. 6 shows the micro-
Raman spectra of annealed and cooled in the fast rate 
regime Cu–Al–O films in dependence on the substrate 
temperatures. For the Cu–Al–O films, several peaks at 
232, 288, 343, 361, 484, 593, 624, 708 and 761 cm–1 
were observed. The strong Raman peaks at 288, 343 and 
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Fig. 6. Raman spectra of the annealed Cu–Al–O films 
deposited at 80, 180, 280, and 380 °C. (Color online) 

624 cm–1 correspond to Ag, Bg (1) and Bg (2) phonon 
modes of the CuO phase [23, 24]. For CuO, only three 
optical phonon modes Ag + 2Bg are Raman active. The 
change (3…5 cm–1) in peak positions of Ag, Bg (1) and 
Bg (2) phonon modes with increasing the substrate 
temperature reflects strain and size effects that act to 
confine the lattice vibrations in the radial directions 
resulting in a shift in Ag and Bg symmetries [25]. The well-
defined peak at 232 cm–1 was attributed to the 
bandboundary LA phonon [26] or spin-phonon coupling 
[24]. The enhancement of the substrate temperature leads 
to increasing the intensity of CuO-related Raman 
scattering modes. This fact correlates with the observed 
results for the elementals distribution inside  
Cu–Al–O films, which is presented in Fig. 1. Therefore, to 
deposit single-phase CuAl2O4 films by using RIBS, more 
favorable is choosing the low-temperature range of 
substrate temperatures. 

Other Raman peaks in Fig. 6, which are located at 
361, 484, 593, 708 and 761 cm–1, are related to CuAl2O4. 
It should be noted that CuAl2O4 is an inverse spinel, 
which exhibits the cubic structure. In this structure, the 
oxygen anions form a cubic close-packed sub-lattice 
surrounded by Cu2+ and Al3+ cations occupying 
tetrahedral and octahedral positions, respectively. 
CuAl2O4 is related to the mFd 3  space group, which 
predicts five active Raman modes, namely, 
Г = A1g + Eg + 3T2g [27]. The wide Raman peaks 
observed at 361, 593 and 708 cm–1 correspond to T2g 
phonon mode of CuAl2O4 as a result of Cu–O vibrations. 
The peak at 761 cm–1 could be assigned to A1g that 
represents the vibrations of Mt –O4 tetrahedron (Mt, 
tetrahedral cation) [28]. The weak Eg mode at about 
450 cm–1 corresponds to the bending mode of Al–O 
tetrahedron. The great width of the high-frequency band 
could be caused by the presence of different cation–anion 
bond lengths in CuAl2O4 [29].  

3.1. Photocatalytic studies 

The mechanism for MO degradation by photocatalysis 
has been described by He Y. et al. [30, 31]. At the 
beginning, CuAl2O4 semiconductor is photo-excited to 
generate electron (e-

CB)-hole (h+
VB) pairs. Water 

molecules are then split into H+ and the oxidizing OH• 
(hydroxyl OH– ions) due to the presence of the valence 
band holes. Then, hydroxyl ions also inject electrons into 
the valence band holes (of CuAl2O4) to form OH•. OH• is 
the main oxidant for the degradation of MO molecules in 
water. OH• attaches to the aromatic ring of MO, and later 
finds multiple substitutions. The intermediate could be 
further attacked by OH• and subsequently could break 
into smaller molecules generating CO2 and H2O at the 
end of reaction. Electron from the conduction band is 
scavenged by an O2 molecule to generate superoxide 
radical O2

•–, however, they have a minor role to play in 
the photocatalytic oxidation process. Therefore, photo-
irradiation was necessary to achieve the better degra-
dation within a short time and it would help to reduce the 
reaction time and to increase degradation rate [17]. 
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Fig. 7. Degradation rate constants of MO in the presence of 
CuAl2O4 films under UV Hg lamp irradiation. K = –ln(C0/C)/t, 
K – degradation rate constant, C0 – initial concentration, C – 
concentration at certain time, t – reaction time. 
 
 

We suppose that the activity of photocatalyst must 
be increased with increasing roughness of the films. 
Therefore, the fast-cooled films were selected for 
photocatalytic experiments. To quantitatively describe 
the reaction kinetics of the MO degradation, a pseudo-
first order equation C = C0 exp (–Kt) (where C0 is the 
initial concentration of the methyl orange, C is the 
concentration at a given moment of time (t) and K – 
degradation constant) was used appropriate for low dye 
concentrations [32]. MO solutions are very stable and do 
not degrade under visible or UV lights, except when 
being assisted by a suitable photocatalyst [33]. The 
dependence of ln(C0/C) against irradiation time was 
plotted from which the constant of degradation rate K 
was calculated. The diagram in Fig. 7 demonstrates the 
dependence of K values on time and substrate 
temperature under UV irradiation. As can be seen, the 
degradation rate constant of MO is decreased with 
increasing the substrate temperature and diminish with 
the time. We supposed that this fact is related with 
decreasing the surface conductivity for CuAl2O4 films 
grown at higher temperatures. Improvement of the 
specific surface of CuAl2O4 films by thermal annealing 
and with adjustment of optimal cooling conditions can 
make these films suitable for photocatalytic applications. 
The greatest K value of MO degradation was observed 
for the samples grown at 180 °C after 3-hour irradiation.  

4. Conclusions 
 
The effects of thermal annealing as well as of cooling 
regimes (fast and slow ones) on the microstructure, 
morphology, and optical properties of Cu–Al–O films 
deposited at different substrate temperatures 
(80...380 °C) by using the RIBS method were 
investigated with XRD, EDX, FTIR, Raman scattering 
and AFM. It has been found that the increase of substrate 
temperature indicates what properties of Al/Cu ratio in 
as-grown Cu–Al–O films leads to. XRD studies confirm 
formation of single-phase CuAl2O4 films at both regimes 
of  cooling   after thermal  annealing   at  the  temperature  

900 °C in air for 3 hours. However, Raman scattering 
examinations have shown the presence of CuO phases 
was found especially at the highest substrate 
temperatures. The RIBS method enables to obtain very 
smooth surface with RMS roughness of the Al–Cu–O 
films close to 0.37...1.39 nm. It has been found that 
application of fast cooling regime allows obtaining the 
CuAl2O4 films with an improved specific surface. The 
improvement of the specific surface inherent to CuAl2O4 
films with thermal annealing in the fast cooling regime 
can make these films suitable for photocatalytic 
applications. Additional optimization of technological 
parameters of the growth method and post-growth 
temperature annealing is necessary to form the single-
phase CuAl2O4 films and for the enhancement of value 
for their photocatalytic parameters providing 
decomposition of dangerous pollutions. 
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Структурні, коливальні та фотокаталітичні властивості плівок CuAl2O4 

Л.А. Миронюк, М.Г. Душейко, В.А. Карпина, Д.В. Миронюк, О.І. Биков, О.І. Оліфан, О.Ф. Коломис, 
В.В. Стрельчук, А.А. Корчовий, С.П. Старик, В.М. Ткач, А.І. Євтушенко  

Анотація. Тонкі плівки Cu–Al–O вирощено на підкладках Si (111) методом реактивного іонно-променевого 
розпилення (RIBS) при температурі підкладок у діапазоні від 80 до 380 °C. Вивчено вплив термічного відпалу 
плівок Cu–Al–O при різних режимах охолодження на мікроструктуру, морфологію, оптичні властивості та 
фотокаталітичну активність. Властивості відпалених плівок Cu–Al–O вивчали за допомогою атомно-силової 
мікроскопії (AFM), енерго-дисперсійної рентгенівської спектроскопії (EDX) та інфрачервоної спектрометрії з Фур’є 
перетворенням (FTIR). Рентгенограми свідчать про те, що після термічного відпалу при 900 °C наявною є лише фаза 
CuAl2O4. Конфокальні вимірювання комбінованого розсіювання підтверджують також наявність фаз CuO у 
відпалених зразках Cu–Al–O. Результати AFM показали, що найбільша середньоквадратична шорсткість поверхні 
спостерігається у відпалених плівках CuAl2O4, отриманих у режимі швидкого охолодження. Фотокаталітичні 
властивості плівок CuAl2O4 досліджували за допомогою барвника метилового оранжевого як модельного 
забруднювача. Отримані результати вказують на те, що CuAl2O4 є потенційним кандидатом для практичного 
застосування при дослідженні фотокаталітичної деградації органічних сполук. 
Ключові слова: плівки Cu–Al–O, XRD, оптичні властивості, FTIR, фотокаталітична деградація. 
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