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Abstract. The magneto-optical Kerr effect in Gd20Co80 alloy and cobalt thin films has been 
studied in a broad spectral range applying spectral ellipsometry experimental technique. 
The results of the experiments showed the complex nature of the complex Kerr angle 
dispersion curves. A quantum mechanical formalism for degenerate and non-degenerate 
Landau levels for quasi-free electrons in ferromagnetic material has been developed in 
order to analyze the experimental data. The equivalence of relations for off-diagonal 
dielectric tensor elements for non-degenerate Landau levels to the classical case of the 
motion of quasi-free electrons along circular trajectories in a magnetic field has been 
theoretically shown. The degenerate Landau levels in this approach are the result of motion 
of electrons in small confined volumes near rare-earth alloy atoms. Rotation of light 
polarization occurs in this case due to transitions between subbands having different 
magnetic quantum numbers. This theoretical approach allowed us to interpret in detail 
shapes and sign of the complex Kerr angle dispersion curves, which actually include the 
contributions of optical transitions between degenerate and non-degenerate energy levels. 
The complex Kerr angle sign is determined by the magnetization magnetic field direction 
for non-degenerate Landau levels and the Hund rule for degenerate Landau levels. 
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1. Introduction 

The magneto-optical Kerr effect (MOK) is manifested in 
changing the polarization of light reflected from the 
magnetized surface. Studying the spectral dependences of 
the off-diagonal dielectric tensor components that are 
responsible for this effect proved to be an effective 
method to determine the magnetic properties of 
materials. Classical electrodynamics allows one to 
describe in detail the macroscopic components of the 
dielectric tensor in a magnetized medium, if taking into 
account the symmetry of magnetized medium [1]. In fact, 
the basis of such a theoretical consideration is the 
analysis of components obtained by decomposition of the 
dielectric tensor by electrical and magnetic components. 
For example, the Kerr magneto-optical effect enables to 
register two components of magnetization in a sample 
with directions of magnetization parallel to and 
perpendicular to the plane of light incidence [2]. MOK 
was registered in the antiferromagnetic material, which 
allowed the authors [3] to register the magnetic octupole 
moments.  

Quantum-mechanical theory of MOK is based  
on taking into account the spin-orbit interaction [4] of  
a single metal atom. In this case, quasi-free electrons  
 

in the conduction band are taken into account by 
introducing a pseudopotential that is actually the sum of 
Fourier components of the decomposition of orthogonal 
plane de Broglie electrons in the conduction band. The 
contribution to the optical conductivity of quasi-free 
electrons is taken into account by using the Drude theory, 
which is actually taken as empirically given in this 
context. The macroscopic characteristics of MOK are 
related to the direction of the magnetization of the 
medium, which leads to the appearance of transverse or 
longitudinal MOK. It is taken into account mainly by 
calculating the densities of electronic states. The Kubo 
formula [3] is used to determine the components of the 
optical conductivity tensor, which is used to obtain 
macroscopic characteristics of the medium. 

The real and complex components of the Kerr angle 
for gadolinium have positive values within the range of 
energies 1…5 eV with a strong maximum for the Kerr 
angle components in the vicinity of energies 4…4.5 eV 
[5]. For cobalt, negative values were registered for the 
real and complex component of the Kerr angle in the 
vicinity of the wavelengths of 350…600 nm [6]. At the 
same time, there was a change in the sign of the complex 
component of the Kerr angle in the region close to 2.5 eV 
for nanometer cobalt film [7] at positive values within  
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the range 1.5…2.5 eV. The sign of the Kerr angle for 
cobalt changed within the entire range of light 
wavelengths corresponding to 1…5 eV [8] with changing 
the direction of perpendicular to the surface of the sample 
magnetization. Nanostructured by producing hexagonal 
arrays of subwavelength holes, cobalt films show 
variation of the MOK effect parameters depending on the 
hole diameters with the appearance of positive Kerr angle 
values within the region 3.5…5 eV [9]. 

The goal of this work is to study experimentally 
magneto-optical Kerr effect dispersion curves in 
Gd20Co80 alloy as well as to develop the quantum-
mechanical formalism to describe the dielectric tensor 
off-diagonal elements. 

2. Theory: off-diagonal dielectric tensor components 
for degenerate and non-degenerate Landau levels in 
ferromagnetics 

If we have a system with simultaneous acting optical 
field and DC magnetic field (e.g., spectral ellipsometry 
of a ferromagnetic sample with crystal potential ( )rU


) 

[10], we can present Hamiltonian for this system as: 

( ) ( )rUtrA
c
ep

m
H

e
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



 −=

2
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For metal crystal lattice (ignoring ( )rU


 in the case 
of quasi-free electrons), we consider optical transition 
perturbing Eq. (1) Hamiltonian by a polarized along the α 
axis dipole ( )αnmtd  induced by a transition between n and 
m energy levels. In our case, we have to take into 
consideration both degenerate and non-degenerate 
Landau levels formalisms. The models have to take into 
account both quasi-free electrons motion and electrons 
interaction with constant magnetic field [11]. 
Unperturbed by optical field Eq. (1) Hamiltonian can be 
written using numbers operators (see Eqs (A8) from 
Appendix) as 



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 +ω=

2
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0 aaH B .      (2) 

Eigennumbers of the Hamiltonian (Landau energy levels) 
can be found introducing positive integers n-eigen-
numbers of creation and annihilation operators: 

( ) Bn nE ω+= 21 .      (3) 

Here, n is the principal quantum number, 

cm
eB

e
B =ω  – cyclotron frequency. The dielectric 

susceptibility can be found as perturbed by induced light 
dipole transition moments between energy levels 
Hamiltonian [12]: 
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where mmnnnm ρ−ρ=∆  is the difference between relative 
populations of energy levels, ρ is density matrix. 

Applying the known relations for creation and annihi-

lation operators ( 1−= nnna , 11† ++= nnna ) 

that were derived in Appendix, we can find off-diagonal 
tensor elements as a function of these operators. Let us 
consider one-photon optical transitions (Δn = ±1). Using 
Eq. (A4) from Appendix, we can derive a new relation 
for y

mn
x
nm dd  members from Eq. (4): 
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We can receive expressions for both density matrix ρn,n 
and for off-diagonal dielectric tensor elements in a model 
of all possible optical transitions between Landau energy 
levels: 
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Here, ωmn = ωB for m = n ± 1 optical transitions. 
Thus, we obtain relations for off-diagonal elements of the 
dielectric tensor, which are similar to the relations within 
the frames of classical physics with monotonically 
decreasing dielectric tensor elements for lower light 
wavelengths [13]. The expression is written under 
assumption of isotropic alloy having ferromagnetic 
magnetization along z axis, which results in two nonzero 
off-diagonal dielectric tensor components. Thus, we 
obtained an important result for the motion of quasi-free 
electrons in metal that does not contradict to both 
classical and quantum-mechanical approaches. Quantum-
mechanical description was performed under the 
condition of Landau levels non-degeneracy. 

Degeneration of Landau levels is possible in small 
volumes of ferromagnets. The energy from Eq. (2) does 
not depend on the momentum pz = ħ kz that is parallel to 
magnetic field, therefore longitudinal motion is 
conserved in optical transitions. As a consequence, each 
Landau level is degenerate because of kz quantum 
number. For finite system having S surface maximum 
numbers of states nmax of energy eigenstates is: 

( )2max
Hl
Sn ≈ , 

eB
hclH = .       (7) 

lH is the Landau level characteristic length that describes 
the size of an area with a high probability to find a 
particle there [14]. For stronger magnetic field, there is a 
greater degeneracy – electrons are forced to fill a smaller 
cross-section area as opposite to weak magnetic field, 
when electron wave functions fill large space areas. For 
magnetic field 10 Tesla – lH is equal to 10 nm. This size 
is of the same order of magnitude as the 20-nm thickness 
GdCo film from Fig. 1, which indicates the influence of 
film surfaces on its dispersion curves.  

For these confined systems, the Schroedinger 
equation has to be written with account of geometry 
inherent to the system, and, as a result, the equation 
solutions depend on boundary conditions at the surfaces 
of granules/clusters/nanoparticles. Under assumption of 
model of quasi-free electrons in central-symmetric 
electric fields near rare earth atoms, the Schroedinger 
equation for this geometry can be written in spherical 
coordinates, similar to those for hydrogen atom, with 
solutions in the form of products including radial and 
angular parts: 
( ) ( ) ( )ϕθ=ϕθψ ,,, YrRr , 

( ) ( )ϕθ=ϕθ ,,ˆ YmYLz , 
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        (8) 
Eigenfunctions of L2 and Lz are usually expressed as 

spherical harmonic functions ( )ϕθ,lmY  with eigenvalues 
l(l + 1)ħ and mħ, respectively. In this paper, we focus 
solely on optical Kerr effect rotation as a result of 
transitions between energy subbands in ferromagnetic 
intrinsic magnetic field BmE Bm µ−=∆ . Magneto-optical 
Kerr effect can be described as a result of Δm = ±1 
transitions. Light circular polarization in the effect is 
based on the properties of spherical harmonic functions 

( )ϕθ,lmY  [15]. The sign of light rotation for degenerate 
Landau levels in ferromagnetic alloys is fixed and can be 
either positive or negative (with a possibility to apply 
Hund’s rule for alloy components). In fact, we consider 
the MOK effect as a result of the interaction of the 
angular momentum with macroscopic magnetization 
similarly to [4], where this interaction is considered at the 
level of a single atom (spin-orbit interaction). 

The most significant features of degenerate and 
non-degenerate Landau levels models in ferromagnets 
are given in Table. 

From a purely experimental view point, Eq. (6) 
differs from Eq. (8) for electrons in a spherically-
symmetric field by the absence of resonant frequencies 
with symmetric/antisymmetric shapes of imaginary/real 
components of the Kerr complex angle on dispersion 
dependences. The case of Eqs (6) results in monotoni-
cally decreasing the θ(ω) and η(ω) curves. 

3. Experimental 

The magneto-optical study of Gd20Co80 alloy films was 
carried out by studying the linear magneto-optical Kerr 
effect in a polar geometry. This effect implies rotation of 
the polarization plane and the appearance of ellipticity of 
the light reflected from a medium magnetized 
perpendicularly to the surface. We measured the complex 
Kerr angle in a wide range of the spectrum λ = 
0.24…1.0 μm by using the Woollam M-2000 spectral 
ellipsometer. Gd20Co80 alloy films with thicknesses from 
20 to 100 nm were deposited using the ion-plasma 
method at a constant current in vacuum at the pressure of 
10–3 Pa on glass water-cooled substrates. 

With the spherical symmetry of the spatial 
restriction of the motion of quasi-free electrons, we can 
consider optical transitions by applying the stationary 
quantum-mechanical perturbation theory, which leads to 
the relation (4). In this case, Kerr angles have an 
additional physical meaning – they are functions of the 
matrix elements of optical transitions with the implemen-
tation of the selection rules Δm = ±1. If we consider 
spherically-symmetric solutions of the Schrödinger 
equation (Eq. (8)), it contains a component in the form  
of spherical functions  ( )ϕθ,lmY .  As  a  consequence, the  
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projection of the dipole moments of the optical 
transitions on x and y axes are connected and shifted in 
time by 2π  at Δm = ±1. The dielectric tensor elements 

( )ωεxy  and ( )ωεxx  determined applying Eq. (4) are 
related similarly: 
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( ) ( )ωε≡ωε xxxyi .       (9) 

Thus, if we consider the dispersion dependence of 
the complex refractive index n + ik in the narrow spectral 
range of such an optical transition with the frequency 
ω = ω0, we can write as a consequence of Eqs (4) and (9): 

( ) xxxx

xyi
i

ε−ε

ε
=η+θ

1
, 

( ) ( ) ( ) ( ) ( ) 1
0

−γ+ω−ω≡ωε≡ωε≡ωη+ωθ iii xxxy . (10) 

The first relationship from Eq. (10) is taken from 
[13]. In fact, we are talking about optical transitions 
between states in the vicinity of alloy atoms at Δm = ±1 
with antisymmetric and symmetric dependences for 
correspondingly real θ(ω) and complex η(ω) parts of the 
Kerr angle near the resonant frequency ω0. At the 
qualitative level, Eq. (10) should be pronounced in the 
dispersion dependences as local extrema in η(λ) curves 
with a simultaneous change in the sign of the derivative 
in the dependences θ(λ). Eq. (10) can be used for 
analyzing the qualitative experiments to identify these 
transitions. Optical transitions between non-degenerate 
Landau levels that result from electrons in magnetic field 
and move at some distance from the alloy atoms also 
contribute to the total magneto-optical effect. 

Fig. 1 shows the dispersion dependences of 
complex Kerr angles for Gd20Co80 alloy films of different 
thickness values. As can be seen from Fig. 1a, η(λ) 
curves have a strong absorption maximum at the energy 
1.45 eV and a weak maximum in the range of 3.2 eV  
 

 
 

1 2 3 4 5
-0.4

-0.3

-0.2

-0.1

0.0

0.1

 

 

θ,
 d

eg

E, eV

1 2

6

54

3

2

 
 

1 2 3 4 5
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

 

 

η,
 d

eg

E, eV

16
4

5
2

3

 
 
Fig. 1. Complex Kerr angles in Gd20Co80 thin films of different 
thickness (1 – 20 nm, 2 – 40, 3 – 50, 4 – 60, 5 – 80, 6 – 100). 
 
 
(indicated with arrows), which correspond to the 
simultaneous change in the sign of θ(λ) derivatives at 
these two energy values. The maximum located at 3.2 eV 
(Fig. 1a) is most likely associated with gadolinium atoms 
in the sample alloy. These transitions for gadolinium 
atoms must have weaker cross-sections, because its 
valence electrons originate from inner electronic shells.  
It is also important to note the change in η(λ) signs in 
Fig. 1 at high values of light energies. In this case,  
 

Table. Magneto-optical Kerr effect in rare earth and d-metal alloys. 

Landau levels in ferromagnets Degenerate states Non-degenerate states 

Symmetry 
Confined spherical geometry in the 
vicinity of atoms of rare earth and 

d-metals 

Quasi-free electrons in infinite metal 
system with weak magnetization 

Schroedinger equation solutions Spherical harmonic functions Landau levels wave functions 
Quantum numbers selection rules 
responsible for polarization plane 

rotation 

Transitions between energy 
subbands with Δm = ±1 

Transitions between Landau levels with 
Δn = ±1 

Sign of light rotation Depends on Δm sign Depends on magnetic field direction 

Optical dispersion properties 
Changing the sign of the derivative 
of the real part of the Kerr angle in 

the vicinity of narrow extremes. 

Monotonic dependences of the real and 
imaginary components of the Kerr angle 
similarly to classical model of quasi-free 

electrons motion in magnetic field. 
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Fig. 2. Complex magneto-optical Kerr effect of electron-beam 
deposited Co film with the thickness 35 nm (1 – θ(E), 2 – η(E)). 
 
 
we consider optical transitions that depend on the  
magnetization direction in a ferromagnet. The 1.45 and 
3.2 eV absorption lines in Fig. 1 of the Gd20Co80 alloy are 
not typical for the spectral curves of gadolinium and 
cobalt alone. Thus, gadolinium is characterized by the 
absorption line at 2.6 eV [5]. In the case of cobalt 
(Fig. 2), we are talking about a band in the vicinity of 
2.4 eV similarly to the results in [9]. In the case of the 
Gd20Co80 alloy, its band gap obviously does not coincide 
with the energy gaps of neither gadolinium nor cobalt. 

If we consider the experimental dispersion 
dependences for the Kerr angle in the cobalt film in 
Fig. 2, we can see that the curve of the imaginary part of 
the complex Kerr angle changes its sign to positive 
within the spectral range above 3.5 eV. MOK in cobalt is 
well studied with negative values of the Kerr angle 
component [6, 16]. Thus, Fig. 2 dependences can be 
explained similarly to Gd20Co80 alloy case as results of 
presence of optical transitions with arbitrary direction of 
magnetization vector which influences θ(λ) and η(λ) 
signs. 

Dispersive curves in Fig. 1 also depend on the 
thickness of thin films similarly to the results in [17]. In 
MOK effect, the thin film thickness can drastically 
change electrons interaction with magnetization field. It 
can happen when the film thickness approaches to the 
Landau levels characteristic length lH from Eq. (7). As 
the film thickness decreases to this point, the spherically 
symmetrical boundary conditions for the Schroedinger 
equation (Eq. (8)) become not valid anymore. 
 
4. Conclusions 

We have performed a theoretical analysis of motion 
inherent to quasi-free electrons in a magnetized 
ferromagnetic alloy by applying a quantum-mechanical 
formalism to describe optical transitions between Landau 
levels. The experimental part of the research including 
spectral-ellipsometric studies of the complex Kerr angle 
in thin films of Gd20Co80 alloy of different thickness 
values as well as a thin film of cobalt. Being based on 
this study, we can draw the following conclusions: 

1. Motion of quasi-free electrons in a magnetic field 
inside infinite metal volumes with weak magnetization 
results in nonzero dielectric tensor off-diagonal elements, 
i.e., to nonzero complex Kerr angles. For non-degenerate 
Landau energy levels, the relations between the values of 
the off-diagonal elements of the tensor are in fact similar 
to the classical formalism, which describes circular 
motion of electrons in magnetic field. The sign of the 
Kerr angle (left- or right-circular reflected light) in a non-
degenerate system of Landau levels depends on the 
direction of the magnetic field perpendicular to the 
sample surface, i.e., can vary its sign depending on the 
magnetization of the sample. 

2. In the case of degeneracy of Landau levels due to 
the motion of electrons in small spatial volumes in the 
vicinity of d-metal atoms or rare-earth atoms of 
ferromagnetic alloys, the solutions of the Schroedinger 
equation are written as spherical functions due to the 
obvious spherical symmetry of the system. The nonzero 
Kerr effect in this formalism occurs due to the greater 
number of transitions between the electronic levels of the 
corresponding atom with a change in the magnetic 
quantum number +1 or –1. In this case, the sign of the 
Kerr angle is constant and is defined by the electronic 
structure of the corresponding atoms of the metal alloy 
(in our case, cobalt and gadolinium). 

3. The dispersion dependences of the optical cons-
tants of the ferromagnetic alloy contain two components 
due to optical transitions between both non-degenerate 
and degenerate Landau levels. For the latter case, we 
have simultaneously obtained rather narrow extremes of 
the imaginary part of the complex Kerr angle and changing 
the real part of the Kerr angle sign. These extremes arise 
due to motion of electrons in confined volumes near the 
alloy atoms. Quasi-free electrons in the infinite system 
model contribute to the dispersion curves as a monotonic 
offset, which can be either positive or negative 
depending on directions of the magnetic field in a 
sample. In this case, the magneto-optical Kerr effect can 
be described within the framework of classical model for 
quasi-free electrons circular motion in the magnetic field. 

Appendix A. 

Let us find relationships between 
c

eAp −  member from 

Eq. (1) and creation a† and annihilation a operators for 
quasi-free electrons of ferromagnetic with intrinsic 
magnetic field directed along Z axis. We would like here 
to write the equations for Landau levels similar to the 
known form for quantum harmonic oscillator to simplify 
equations for off-diagonal dielectric tensor components. 

1. Let us find first the relationship between vector 
potential A, magnetic field B = Bz and angular 
momentum projection Lz for unperturbed H0 Hamiltonian 
(taken from Eq. (1)) for quasi-free electrons: 
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Let us choose the vector potential as 
( )0,2,2 BxByA −= and find a relation between Ap  

and Lz : 
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Eq. (A2) describes interaction of electron with the 
magnetic field in terms of angular momentum projection 

similar to the energy term in Eq. (8) 
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there for spherical harmonic functions solutions. 
2. Let us find a connection between the dipole 

moment d, unperturbed Hamiltonian H0 and 
c

eAp −  by 

writing the commutator of coordinate with Eq. (A1) H0 
Hamiltonian. We consider only kinetic energy and 
interaction with the magnetic field Eq. (A1) parts of H0 
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As a result, the dipole moments d induced by light 
between two states m and n can be expressed in terms of 

c
eAp −  member by writing first the commutator for x 

axis (it can be written similarly to y axis, too). 
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3. Let us find the commutators of 
c

eAp x
x − , 

c
eA

p y
y −  operators with the vector-potential A that 

depends only on X and Y coordinates. 
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4. Let us introduce a and a† operators (
cm

eB

e
B =ω  

cyclotron frequency): 
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Let us prove the equation (A6) operators are  
creation and annihilation operators for unperturbed 
Hamiltonian similarly to the quantum harmonic oscillator 
case. In order to prove it, let us find commutators of 

c
eAp x

x − , 
c

eA
p y

y −  operators with creation a† and 

annihilation a operators: 
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5. As a result, Eq. (A1) Hamiltonian of the system 
can be written similarly to quantum harmonic oscillator 
equations: 
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1−= nnna , 

11† ++= nnna .                 (A8) 

Eqs (A4) and (A8) allow us to write equations for 
optical transitions between Landau levels by using a† and 
a operators. 
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Магнітооптичний ефект Керра у сплаві Gd20Co80 

В.Г. Кудін, С.Г. Розуван, В.С. Стащук  

Анотація. Магнітооптичний ефект Керра у тонких плівках сплаву Gd20Co80 та кобальту вивчено за допомогою 
експериментальної методики спектральної еліпсометрії у широкому спектральному інтервалі. Результати 
експериментів показали складний характер дисперсійних залежностей комплексного кута Керра. Для аналізу 
експериментальних даних було розвинуто квантовомеханічний формалізм вироджених і невироджених рівнів 
Ландау для квазівільних електронів у феромагнітному матеріалі. Для невироджених рівнів Ландау було 
теоретично показано еквівалентність співвідношень для недіагональних тензорних елементів діелектричної 
проникності класичному випадку руху квазівільних електронів вздовж циркулярних траєкторій у магнітному 
полі. Вироджені рівні Ландау при даному підході є результатом руху електронів у малих обмежених об’ємах 
біля рідкоземельних атомів сплаву. При цьому поворот поляризації світла відбувається внаслідок переходів 
між енергетичними рівнями з різними значеннями магнітного квантового числа. Даний теоретичний підхід 
дозволив у деталях проінтерпретувати хід та знак дисперсійних кривих комплексного кута Керра, які 
фактично включають внески від оптичних переходів між виродженими та невиродженими енергетичними 
рівнями. Знак комплексного кута Керра визначається напрямком магнітного поля намагніченості для 
невироджених рівнів Ландау та правилом Хунда для вироджених рівнів Ландау. 

Ключові слова: сплав гадоліній кобальт, рівні Ландау, магнітооптичний ефект Керра. 
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