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Abstract. The frequency and temperature dependences of the tangent of dielectric loss 

angle as well as the real and imaginary part of the dielectric constant of MnGaInTe4 crystals 

are investigated in the frequency range of 10
2
 to 10

6
 Hz. The experimental values of the 

studied characteristics are determined. The real and imaginary parts of the permittivity are 

found to undergo significant dispersion, which has a relaxation nature. The main type of 

dielectric losses in MnGaInTe4 crystals in the frequency range of 10
2
 to 10

6
 Hz are the 

electrical conductivity losses. The conductivity is characterized by a zone-hopping 

mechanism. The activation energies of charge carriers are determined. 
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1. Introduction 
 

At present, chalcogenides with complex compositions 

have become the subject of extensive research due to 

their unusual physical properties and prospects for 

practical applications. Among these compounds, 

chalcogenides of the type AB2C4 (here A stands for Fe, 

Mn, Co or Ni, B stands for Ga or In, and C stands for S, 

Se or Te, respectively) are promising for creating new 

magnetic field controlled optoelectronic devices [1–20]. 

These compounds may be used for developing lasers, 

light modulators, photodetectors and other functional 

devices controlled by magnetic field. In [13], 

heterojunctions based on FeIn2Se4 nanocrystals [12] have 

been fabricated. Magnetoelectric effects (coupling of the 

magnetic and electrical subsystems) are known to take 

place in magnetic semiconductors. These effects are most 

intensely manifested in the systems permitting 

coexistence of magnetic order and electric polarization. 

In this respect, the need to study dielectric properties of 

magnetically ordered poorly conducting semiconductors 

becomes obvious. This problem is also relevant because 

electric polarization applied to a magnetically ordered 

state can significantly affect both the static and dynamic 

properties of the magnetic configuration in the system. In 

[21], a new semi-magnetic semiconductor compound –  

 

MnGaInTe4 – was obtained and some of its physical 

properties were studied. In this research, the results of the 

study of frequency and temperature dependence of the 

tangent of dielectric loss angle as well as the real and 

imaginary part of the dielectric constant of MnGaInTe4 

crystals in the varying electric field are presented. 

2. Experimental, results and discussion 

MnGaInTe4 compound was obtained from a 1:1 mixture 

of monoclinic MnGa2Te4 (space group C2/c) and 

tetragonal MnIn2Te4 (space group I-42m) phases. X-ray 

diffraction demonstrated that MnGaInTe4 crystallized 

into tetragonal syngony with crystal lattice parameters 

a = 6.10293 Å and c = 12.1766 Å [21]. To measure the 

capacitance and tangent of dielectric loss angle, capacitors 

were prepared by applying silver paste to MnGaInTe4 

crystal plates with the thickness of ~1 mm and the mea-

surements were carried out using an E7-20 (25...10
6
 Hz) 

digital impedance measuring device. The crystals were 

placed in an adjustable cryostat capable of maintaining the 

temperature in the range of 293 to 400 K. The accuracy 

of temperature measurements was ± 0.5 K. The voltage 

across the sample was 1 V. The real and imaginary parts 

of the dielectric constant were calculated using the 

expressions ε' = Cd
 
/ε0S and ε'' = tgδ·ε', respectively. 
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Fig. 1. ε'(f) (a) and (b) ε'' of the MnGaInTe4 crystal versus lg f 

at different temperatures. T, K: 295.6 (1), 313 (2), 333 (3), 
353 (4), and 363 (5).  
 

Fig. 1a presents the frequency dependences of the 

real part of the dielectric constant (ε') of the MnGaInTe4 

crystal measured at different temperatures. As can be 

seen from this figure, ε increases with temperature, 

which is related to the increase of the concentration of 

defects. The value of ε' was determined to vary between 

140 and 770 in the temperature range of 296.5 to 363 K 

and frequency range of 10
2
…10

6
 Hz. It can be further 

seen from Fig. 1a that the frequency dependences of the 

real part of the dielectric constant are significantly 

dispersed. At the studied temperatures and the range of 

frequency 10
2
…10

3
 Hz in the beginning ε' slowly, then 

decreased rapidly at this range of 2·10
3
 to 10

 
Hz by ε'.  

ε' remains almost constant at frequencies between 2·10
5
 

and 10
6
 Hz. 

Fig. 1b shows the dependences of the imaginary 

part (ε'') of the dielectric constant of the MnGaInTe4 

crystal on electric field frequency measured at different 

temperatures. As can be seen from this figure, the 

dependences are monotonous in the frequency range of 

10
2
…10

6
 Hz, and ε'' significantly disperses at higher 

frequencies.  

Fig. 2 shows frequency dependences of the 

conductivity of MnGaInTe4 measured at different 

temperatures. It can be seen from this figure that the 

electrical conductivity varies as )0.11.0(~  Sf S  in 

the frequency range of 2·10
2
…10

6
 Hz. At 295.6 K, the 

exponent S takes values in the range of 0.10…0.79, while 

at 363 K it varies in the range of 0.05…0.65. The 

electrical conductivity versus frequency in crystalline  

 

 
 

Fig. 2. Electrical conductivity versus frequency at different 

temperatures. T, K: 295.6 (1), 313 (2), 333 (3), 353 (4), and 
363 (5). 

 

 

 
 
Fig. 3. lg ε'' versus 103/T at different frequencies for the 

MnGaInTe4 crystal. f, Hz: 103 (1), 2…104 (2), 105 (3), and 

106 (4).  
 

 
and amorphous semiconductors obeys the law 

  )0.11.0(~  SS
 [24]. Therefore, hopping 

conductivity may be suggested to occur in the 

MnGaInTe4 crystals. 

Temperature dependences of ε'' of the MnGaInTe4 

crystal at different frequency values are shown in Fig. 3. 

It can be seen from this figure that ε'' grows with 

temperature. The dependence of the imaginary part of the 

dielectric constant on electrical conductivity is known to 

have the form 





0

 [24], and the temperature 

dependence of ε'' has an activated character: 








 
 

kT

E
exp~ . 

Here, k is the Boltzmann’s constant and ∆E is the 

activation energy. Fig. 3 shows that ε'' decreases with the 

increase in frequency. A linear segment was found in the 

dependence 
T

310
~lg    (curve 4) at the frequency of 

10
6
 Hz. The activation energy determined from this 

segment was equal to 0.22 eV. 
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Fig. 4. a) tan δ versus lg f at different temperatures for the 
MnGaInTe4 crystal. T, K: 295.6 (1), 313 (2), 333 (3), 353 (4), 

and 363 (5). b) tan δ versus T at the frequencies of 105 and 

106 Hz for the MnGaInTe4 crystal. 
 

 

Furthermore, the dependences 
T

310
~lg    in the 

frequency range of 10
3
 to 10

5 
Hz consist of two straight 

lines having different trends. The activation energies 

were determined to be 0.30…0.22 eV in the low 

temperature range and 0.54…0.43 eV in the high 

temperature range. One may conclude that the value of 

activation energy is a function of frequency, which may 

be explained by the jump mechanism [23]. Moreover, the 

temperature dependence of the electrical conductivity of 

the MnGaInTe4 crystal was found to have the activation 

nature [21], which means that this conductivity is 

characterized by the band hopping mechanisms. 

Fig. 4a shows frequency dependences of the tangent 

of the dielectric loss angle (tan δ) of the MnGaInTe4 

crystal at different temperatures. The temperature 

dependences of tanδ at the frequencies of 10
5
 and 10

6
 Hz 

are shown in Fig. 4b. The tangent of the loss angle 

characterizes dielectric losses and is numerically equal to 

the ratio of the conduction current to the displacement 

current as follows [24]: 






0

tan
r

a

I

I
. 

Here, Ia is the active current, Ir – reactive current, 

 = 2f is the frequency, σ – electrical conductivity, ε is 

the real part of the dielectric constant, and ε0 – electrical 

constant. 

tan δ is a macroscopic characteristic of a dielectric. 

Its dependences on the frequency, temperature and other 

parameters of the electric field also characterize the 

dependences of the dielectric constant on these 

parameters. 

It can be seen from Fig. 4a that the value of tan δ 

hyperbolically decreases when the frequency of the 

electric field increases. Such hyperbolic decrease 

indicates that loss of conductivity is the main type of 

dielectric loss in the MnGaInTe4 crystal in the frequency 

range of 10
2
 to 10

6
 Hz [25]. The temperature dependence 

of tan δ is characterized by an exponential increase due to 

the increase in conductivity. Therefore, electrical 

conductivity significantly contributes to tan δ at high 

temperatures and low frequencies [24]. 

3. Conclusions 

In this work, the results of the experimental study of the 

dielectric characteristics of a MnGaInTe4 crystal in an 

alternating electric field are presented. A significant 

dispersion of the real and imaginary part of the dielectric 

constant corresponding to the relaxation nature is found 

out. The main type of dielectric loss in the MnGaInTe4 

crystal in the frequency range of 10
2
 to 10

6 
Hz is the loss 

due to electrical conductivity. It was found as well that 

conduction in the MnGaInTe4 crystal in the frequency 

range of 10
2
 to 10

6 
Hz takes place according to the 

jumping mechanism. The activation energies of charge 

carriers are determined from the dependences 

T

310
~lg   . The activation energy values at low 

temperatures vary in the range of 0.30 to 0.22 eV, and at 

high temperatures they change in the range of 0.54 to 

0.43 eV. 
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Дисперсія частоти діелектричних коефіцієнтів кристалів MnGaInTe4 

N.N. Niftiyev, A.O. Dachdemirov, F.M. Mammadov, M.B. Muradov 

Анотація. Досліджено частотні та температурні залежності тангенса кута діелектричних втрат, а також дійсної 

та уявної частин діелектричної проникності кристалів MnGaInTe4 в діапазоні частот 10
2
…10

6
 Гц. Визначено їх 

експериментальні значення. Виявлено, що дійсна та уявна частини діелектричної проникності зазнають значної 

дисперсії, яка носить релаксаційний характер. Основним видом діелектричних втрат у кристалах MnGaInTe4 у 

діапазоні частот 10
2
…10

6
 Гц є втрати на електропровідність, а провідність характеризується зонно-стрибковим 

механізмом. Визначено енергії активації носіїв заряду. 
 

Ключові слова: діелектрична проникність, діелектричні втрати, частота, дисперсія, релаксація, енергія 

активації. 
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