Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 147-157 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.147


References


1. Al-Seady M.A., Hossain M.M., Al-Mulali F.M., Shaik A.A. Prospective utilization of boron nitride and beryllium oxide nanotubes for Na, Li, and K- ion batteries: a DFT-based analysis. J. Mol. Model.
2023. 29, Issue 11. P. 1-20. https://doi.org/10.1007/s00894-023-05752-9
2. Kadhim Q.S., Ahmad A., Ali F.A., Murtadha F.A. Effect of metal ad-atoms on the structural, electrical, and optical properties of boron-nitride nanostructures towards optoelectronics: a DFT based study. Egypt. J. Chem. 2022. 65, Issue 13. P. 745-752. https://doi.org/10.21608/ejchem.2022.130936.5763
3. Al-Aaraji N.A.-H., Al-Seady M.A., Madlol H.A. et al. Investigation of pure and Al-doped graphene nanomaterials for toxic gas detection using first principles study. IOP Conf. Ser. Earth Environ. Sci.
2022. 1088, Issue 1. P. 012013. https://doi.org/10.1088/1755-1315/1088/1/012013
4. Madlol H.A., Salman J.M., Abduljalil H.M. et al. Comparative adsorption calculations for CO and HCN gas interactions with graphene using density functional theory. Egypt. J. Chem. 2022. 65, Issue
131. P. 385-391. https://doi.org/10.21608/ejchem.2022.120895.5420
5. Jasim S.A., Ahmed E., Al-Ghazaly S.M. et al. Adsorption ability of pure single-walled carbon nanotubes for toxic gas detection using DFT calculations. AIP Conf. Proc. 2022. 2398, Issue 1. https://doi.org/10.1063/5.0093549 SPQEO, 2025. V. 28, No 2. P. 147-157. AL Saati S.A.A., Abdelmoula N. and Shinen M.H. Comparing structural, morphological, and optical properties … 155
6. Hashim A., Hadi A., Ibrahim H., Rashid F.L. Fabrication and enhancement of morphological and optical properties of PVP/SiC/Ti nanosystems for renewable energies and nanoelectronics. J. Inorgan. Organometal. Polym. Mater. 2023. P. 1-11. https://doi.org/10.1007/s10904-023-02908-1
7. Abed H.H., Al-Aaraji N.A.-H., Salman J.M. et al. Theoretical study on dye-sensitized solar cells using graphene quantum dots and curcumin, phthalocyanine dyes. IOP Conf. Ser. Earth Environ. Sci. 2022. 1088, Issue 1. P. 012012. https://doi.org/10.1088/1755-1315/1088/1/012012
8. Hashim A., Hadi A., Al-Aaraji N.A.-H. Fabrication and augmented electrical and optical properties of PMMA/CoFe 2 O 4 /ZnCoFe 2 O 4 hybrid nanocompo- sites for quantum optoelectronics. Opt. Quant. Electron. 2023. 55, Issue 8. P. 716. https://doi.org/10.1007/s11082-023-04994-4
9. Al-Seady M.A., Abdulwahhab N.A., Abbood H.I., Abduljalil H.M. DFT study of chemical adsorption of NO 2 gas on graphene nanomaterials. Mater. Sci. Forum. 2021. 1039. P. 391-397. https:// doi.org/10.4028/www.scientific.net/MSF.1039.391.
10. Kik K., Bukowska B., Sici?ska P. Polystyrene nanoparticles: sources, environmental occurrence, tissue distribution, accumulation, and toxicity. Environ. Pollut. 2020. 262. P. 114297. https://doi.org/10.1016/j.envpol.2020.114297
11. Al-Seady M.A., Ahmed E., Abduljalil H.M., Ekhewish A.A. Studying the adsorption energy of CO gas molecule in different nanosystems using density functional theory. Egypt. J. Chem. 2021. 64, Issue 5. P. 2607-2612. https://doi.org/10.21608/ejchem.2021.55434.3169
12. Ziental D., Czarczynska-Goslinska B., Mlynarczyk D.T. et al. Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials. 2020. 10, Issue 2. P. 387. https://doi.org/10.3390%2Fnano10020387
13. Nyamukamba P., Okoh O., Mungondori H. et al. Synthetic methods for titanium dioxide nanoparticles: a review. Titanium Dioxide - Material for a Sustainable Environment. 2018. 8. P. 151-175. http://doi.org/10.5772/intechopen.75425
14. Rajput N. Methods of preparation of nanoparticles: a review. Int. J. Adv. Eng. Technol. 2015. 7, Issue 6. P. 1806. https://doi.org/10.4236/ojinm.2018.82002
15. Jamkhande P.G., Ghule N.W., Bamer A.H., Kalaskar M.G. Metal nanoparticles synthesis: overview of preparation methods, advantages and disadvantages, and applications. J. Drug Deliv. Technol. 2019. 53. P. 101174. https://doi.org/10.1016/j.jddst.2019.101174
16. Christian P., Von der Kammer F., Baalousha M., Hofmann T. Nanoparticles: structure, properties, preparation, and behavior in environmental media. Ecotoxicology. 2008. 17. P. 326-343. https://doi.org/10.1007/s10646-008-0213-1
17. Rao B.G., Mukherjee D., Reddy B.M. Novel approaches for nanoparticle preparation. In: Nanostructures for Novel Therapy. Elsevier, 2017. P. 1-36. https://doi.org/10.1016/B978-0-323-46142- 9.00001-3.
18. Rao J.P., Geckeler K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci. 2011. 36, Issue 7. P. 887-913. https://doi.org/10.1016/j.progpolymsci.2011.01.001
19. Sungur ?. Titanium dioxide nanoparticles. In: Hand-book of Nanomaterials and Nanocomposites for Energy and Environmental Applications. 2021. P. 713-730. https://doi.org/10.1007/978-3-030-36268-3_9
20. Mo S.-D., Ching W. Electronic and optical properties of rutile, anatase, and brookite phases of titanium dioxide. Phys. Rev. B. 1995. 51, Issue 19. P. 13023. https://doi.org/10.1103/PhysRevB.51.13023
21. Gowthaman N., Lim H., Sreeraj T., Amalraj A., Gopi S. Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. In: Biopolymers and Their Industrial Applications. Elsevier, 2021. P. 351-372. http:// doi.org/ 10.1016/B978-0-12-819240-5.00015-8.
22. Zhou D., Chen J., Wu J. et al. Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution. Sustain. Mater. Technol.
2021. 28. P. e00251. https://doi.org/10.1016/j.susmat.2021.e00251
23. Erdem B., Sudol E.D., Dimonie V.L., El-Aasser M.S. Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO 2 particles. J. Polym. Sci. Part A: Polym. Chem. 2000. 38, Issue 24. P. 4431-4440. https://doi.org/10.1002/1099-0518(20001215)38: 24%3C4431::AID-POLA120%3E3.0.CO;2-Y.
24. Toyama N., Takahashi T., Terui N., Furukawa S. Synthesis of polystyrene@TiO 2 core-shell particles and their photocatalytic activity for methylene blue decomposition. Inorganics. 2023. 11, Issue 8. P. 343. https://doi.org/10.3390/inorganics11080343
25. Hayri-Senel T., Kahraman E., Sezer S. et al. Photocatalytic degradation of ciprofloxacin from water using waste polystyrene and TiO 2 composites. Heliyon. 2024. 10, Issue 3. P. e25433. https://doi.org/10.1016/j.heliyon.2024.e25433
26. Jaleh B., Madad M.S., Tabrizi M.F. et al. UV- degradation effect on optical and surface properties of polystyrene-TiO 2 nanocomposite film. J. Iran. Chem. Soc. 2011. 8. P. S161-S168. https://doi.org/10.1007/BF03254293
27. Schinke C., Rattana S., Ziletti A., Oganov A.R. Uncertainty analysis for the coefficient of band-to- band absorption of crystalline silicon. AIP Adv.
2015. 5, Issue 6. https://doi.org/10.1063/1.4923379
28. Maku?a P., Pacia M., Macyk W. How to correctly SPQEO, 2025. V. 28, No 2. P. 147-157. AL Saati S.A.A., Abdelmoula N. and Shinen M.H. Comparing structural, morphological, and optical properties … 156 determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. ACS Publ. 2018. 9. P. 6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892
29. Jachak M., Bhise R., Chaturvedi A. et al. Pyrroloquinoline based styryl dyes doped PMMA, PS, and PS/TiO 2 polymer for fluorescent applications. J. Inorgan. Organometal. Polym. Mater. 2022. 32, Issue 7. P. 2441-2454. https://doi.org/10.1007/s10904-022-02285-1
30. Costa R.G., Brichi G.S., Ribeiro C., Mattoso L.H. Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polymer Bulletin. 2016. 73, Issue 11. P. 2973-2985. https://doi.org/10.1007/s00289-016-1635-1
31. Sen P., Suresh K., Kumar R.V. et al. A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites: effect of modified MWCNT content. J. Sci.: Adv. Mater. Devices. 2016. 1, Issue 3. P. 311-323. https://doi.org/10.1016/j.jsamd.2016.06.016
32. Litina K., Kallitsis J.K., Zamboulis D., Vasilakaki M. Nanocomposites of polystyrene-b-polyisoprene copolymer with layered silicates and carbon nanotubes. Eur. Polym. J. 2006. 42, Issue 9. P. 2098-2107. https://doi.org/10.3390/polym13050745
33. Chiu F.-C., Li B.-H., Jiang J.-Y. Syndiotactic polystyrene/multi-walled carbon nanotube nanocomposites: polymorphism, thermal properties, electrical conductivity, and rheological properties. Compos. - A: Appl. Sci. Manuf. 2012. 43, No 12. P. 2230-2240. https://doi.org/10.1016/j.compositesa.2012.08.002
34. Al-Seady M.A., Grmasha R.A., Al-Aaraji N.A.-H., Abduljalil H.M. Investigation of the adsorption mechanism of methane gas in graphene and copper- doped nano-ribbon using density function theory. J. Phys.: Conf. Ser. 2021. 1879, Issue 3. P. 032099. http://doi.org/10.1088/1742-6596/1879/3/032099
35. Gaabour L. Effect of the addition of TiO 2 nanoparticles on structural and dielectric properties of polystyrene/polyvinyl chloride polymer blend. AIP Adv. 2021. 11, Issue 10. https://doi.org/10.1063/5.0062445
36. Meftah Y., Bekker D., Benhaoua B. et al. Post- annealing effect on structural and optical properties of (?-Fe 2 O 3 ) thin films prepared by spray pyrolysis with moving nozzle. Digest J. Nanomater. Biostruct. 2018. 13. P. 465-474.
37. Hassanien A.S., Akl A.A. Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl. Phys. A. 2018. 124, Issue 11. P. 752. https://doi.org/10.1007/s00339-018-2180-6
38. Habeeb M.A., Hashim A., Mohammed R.M. Prepa- ration and investigation of structural and dielectric properties of PEO-PVA-Fe 2 O 3 nanocomposites for electronic nanodevices. Nanosystems, Nanomate- rials, Nanotechnologies. 2023. 21, Issue 3. https://doi.org/10.15407/nnn.21.03.513
39. Kadhim A.F., Hashim A. Fabrication and augmented structural optical properties of PS/SiO 2 /SrTiO 3 hybrid nanostructures for optical and photonics applications. Opt. Quant. Electron.
2023. 55, No 5. P. 432. https://doi.org/10.1007/s11082-023-04699-8