Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 147-157 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.147
References
1. Al-Seady M.A., Hossain M.M., Al-Mulali F.M.,
Shaik A.A. Prospective utilization of boron nitride
and beryllium oxide nanotubes for Na, Li, and K-
ion batteries: a DFT-based analysis. J. Mol. Model.
2023. 29, Issue 11. P. 1-20.
https://doi.org/10.1007/s00894-023-05752-9
2. Kadhim Q.S., Ahmad A., Ali F.A., Murtadha F.A.
Effect of metal ad-atoms on the structural,
electrical, and optical properties of boron-nitride
nanostructures towards optoelectronics: a DFT
based study. Egypt. J. Chem. 2022. 65, Issue 13.
P. 745-752.
https://doi.org/10.21608/ejchem.2022.130936.5763
3. Al-Aaraji N.A.-H., Al-Seady M.A., Madlol H.A.
et al. Investigation of pure and Al-doped graphene
nanomaterials for toxic gas detection using first
principles study. IOP Conf. Ser. Earth Environ. Sci.
2022. 1088, Issue 1. P. 012013.
https://doi.org/10.1088/1755-1315/1088/1/012013
4. Madlol H.A., Salman J.M., Abduljalil H.M. et al.
Comparative adsorption calculations for CO and
HCN gas interactions with graphene using density
functional theory. Egypt. J. Chem. 2022. 65, Issue
131. P. 385-391.
https://doi.org/10.21608/ejchem.2022.120895.5420
5. Jasim S.A., Ahmed E., Al-Ghazaly S.M. et al.
Adsorption ability of pure single-walled carbon
nanotubes for toxic gas detection using DFT
calculations. AIP Conf. Proc. 2022. 2398, Issue 1.
https://doi.org/10.1063/5.0093549
SPQEO, 2025. V. 28, No 2. P. 147-157.
AL Saati S.A.A., Abdelmoula N. and Shinen M.H. Comparing structural, morphological, and optical properties …
155
6. Hashim A., Hadi A., Ibrahim H., Rashid F.L.
Fabrication and enhancement of morphological and
optical properties of PVP/SiC/Ti nanosystems for
renewable energies and nanoelectronics. J. Inorgan.
Organometal. Polym. Mater. 2023. P. 1-11.
https://doi.org/10.1007/s10904-023-02908-1
7. Abed H.H., Al-Aaraji N.A.-H., Salman J.M. et al.
Theoretical study on dye-sensitized solar cells using
graphene quantum dots and curcumin,
phthalocyanine dyes. IOP Conf. Ser. Earth Environ.
Sci. 2022. 1088, Issue 1. P. 012012.
https://doi.org/10.1088/1755-1315/1088/1/012012
8. Hashim A., Hadi A., Al-Aaraji N.A.-H. Fabrication
and augmented electrical and optical properties of
PMMA/CoFe 2 O 4 /ZnCoFe 2 O 4 hybrid nanocompo-
sites for quantum optoelectronics. Opt. Quant.
Electron. 2023. 55, Issue 8. P. 716.
https://doi.org/10.1007/s11082-023-04994-4
9. Al-Seady M.A., Abdulwahhab N.A., Abbood H.I.,
Abduljalil H.M. DFT study of chemical adsorption
of NO 2 gas on graphene nanomaterials. Mater. Sci.
Forum. 2021. 1039. P. 391-397. https://
doi.org/10.4028/www.scientific.net/MSF.1039.391.
10. Kik K., Bukowska B., Sici?ska P. Polystyrene
nanoparticles: sources, environmental occurrence,
tissue distribution, accumulation, and toxicity.
Environ. Pollut. 2020. 262. P. 114297.
https://doi.org/10.1016/j.envpol.2020.114297
11. Al-Seady M.A., Ahmed E., Abduljalil H.M.,
Ekhewish A.A. Studying the adsorption energy of
CO gas molecule in different nanosystems using
density functional theory. Egypt. J. Chem. 2021. 64,
Issue 5. P. 2607-2612.
https://doi.org/10.21608/ejchem.2021.55434.3169
12. Ziental D., Czarczynska-Goslinska B., Mlynarczyk
D.T. et al. Titanium dioxide nanoparticles:
prospects and applications in medicine.
Nanomaterials. 2020. 10, Issue 2. P. 387.
https://doi.org/10.3390%2Fnano10020387
13. Nyamukamba P., Okoh O., Mungondori H. et al.
Synthetic methods for titanium dioxide
nanoparticles: a review. Titanium Dioxide -
Material for a Sustainable Environment. 2018. 8. P.
151-175. http://doi.org/10.5772/intechopen.75425
14. Rajput N. Methods of preparation of nanoparticles:
a review. Int. J. Adv. Eng. Technol. 2015. 7, Issue 6.
P. 1806. https://doi.org/10.4236/ojinm.2018.82002
15. Jamkhande P.G., Ghule N.W., Bamer A.H.,
Kalaskar M.G. Metal nanoparticles synthesis:
overview of preparation methods, advantages and
disadvantages, and applications. J. Drug Deliv.
Technol. 2019. 53. P. 101174.
https://doi.org/10.1016/j.jddst.2019.101174
16. Christian P., Von der Kammer F., Baalousha M.,
Hofmann T. Nanoparticles: structure, properties,
preparation, and behavior in environmental media.
Ecotoxicology. 2008. 17. P. 326-343.
https://doi.org/10.1007/s10646-008-0213-1
17. Rao B.G., Mukherjee D., Reddy B.M. Novel
approaches for nanoparticle preparation. In:
Nanostructures for Novel Therapy. Elsevier, 2017.
P. 1-36. https://doi.org/10.1016/B978-0-323-46142-
9.00001-3.
18. Rao J.P., Geckeler K.E. Polymer nanoparticles:
preparation techniques and size-control parameters.
Prog. Polym. Sci. 2011. 36, Issue 7. P. 887-913.
https://doi.org/10.1016/j.progpolymsci.2011.01.001
19. Sungur ?. Titanium dioxide nanoparticles. In:
Hand-book of Nanomaterials and Nanocomposites
for Energy and Environmental Applications. 2021.
P. 713-730. https://doi.org/10.1007/978-3-030-36268-3_9
20. Mo S.-D., Ching W. Electronic and optical
properties of rutile, anatase, and brookite phases of
titanium dioxide. Phys. Rev. B. 1995. 51, Issue 19.
P. 13023.
https://doi.org/10.1103/PhysRevB.51.13023
21. Gowthaman N., Lim H., Sreeraj T., Amalraj A.,
Gopi S. Advantages of biopolymers over synthetic
polymers: social, economic, and environmental
aspects. In: Biopolymers and Their Industrial
Applications. Elsevier, 2021. P. 351-372. http://
doi.org/ 10.1016/B978-0-12-819240-5.00015-8.
22. Zhou D., Chen J., Wu J. et al. Biodegradation and
catalytic-chemical degradation strategies to mitigate
microplastic pollution. Sustain. Mater. Technol.
2021. 28. P. e00251.
https://doi.org/10.1016/j.susmat.2021.e00251
23. Erdem B., Sudol E.D., Dimonie V.L., El-Aasser
M.S. Encapsulation of inorganic particles via
miniemulsion polymerization. II. Preparation and
characterization of styrene miniemulsion droplets
containing TiO 2 particles. J. Polym. Sci. Part A:
Polym. Chem. 2000. 38, Issue 24. P. 4431-4440.
https://doi.org/10.1002/1099-0518(20001215)38:
24%3C4431::AID-POLA120%3E3.0.CO;2-Y.
24. Toyama N., Takahashi T., Terui N., Furukawa S.
Synthesis of polystyrene@TiO 2 core-shell particles
and their photocatalytic activity for methylene blue
decomposition. Inorganics. 2023. 11, Issue 8.
P. 343. https://doi.org/10.3390/inorganics11080343
25. Hayri-Senel T., Kahraman E., Sezer S. et al.
Photocatalytic degradation of ciprofloxacin from
water using waste polystyrene and TiO 2 composites.
Heliyon. 2024. 10, Issue 3. P. e25433.
https://doi.org/10.1016/j.heliyon.2024.e25433
26. Jaleh B., Madad M.S., Tabrizi M.F. et al. UV-
degradation effect on optical and surface properties
of polystyrene-TiO 2 nanocomposite film. J. Iran.
Chem. Soc. 2011. 8. P. S161-S168.
https://doi.org/10.1007/BF03254293
27. Schinke C., Rattana S., Ziletti A., Oganov A.R.
Uncertainty analysis for the coefficient of band-to-
band absorption of crystalline silicon. AIP Adv.
2015. 5, Issue 6. https://doi.org/10.1063/1.4923379
28. Maku?a P., Pacia M., Macyk W. How to correctly
SPQEO, 2025. V. 28, No 2. P. 147-157.
AL Saati S.A.A., Abdelmoula N. and Shinen M.H. Comparing structural, morphological, and optical properties …
156
determine the band gap energy of modified
semiconductor photocatalysts based on UV-Vis
spectra. ACS Publ. 2018. 9. P. 6814-6817.
https://doi.org/10.1021/acs.jpclett.8b02892
29. Jachak M., Bhise R., Chaturvedi A. et al.
Pyrroloquinoline based styryl dyes doped PMMA,
PS, and PS/TiO 2 polymer for fluorescent
applications. J. Inorgan. Organometal. Polym.
Mater. 2022. 32, Issue 7. P. 2441-2454.
https://doi.org/10.1007/s10904-022-02285-1
30. Costa R.G., Brichi G.S., Ribeiro C., Mattoso L.H.
Nanocomposite fibers of poly(lactic acid)/titanium
dioxide prepared by solution blow spinning.
Polymer Bulletin. 2016. 73, Issue 11. P. 2973-2985.
https://doi.org/10.1007/s00289-016-1635-1
31. Sen P., Suresh K., Kumar R.V. et al. A simple
solvent blending coupled sonication technique for
synthesis of polystyrene (PS)/multi-walled carbon
nanotube (MWCNT) nanocomposites: effect of
modified MWCNT content. J. Sci.: Adv. Mater.
Devices. 2016. 1, Issue 3. P. 311-323.
https://doi.org/10.1016/j.jsamd.2016.06.016
32. Litina K., Kallitsis J.K., Zamboulis D., Vasilakaki
M. Nanocomposites of polystyrene-b-polyisoprene
copolymer with layered silicates and carbon
nanotubes. Eur. Polym. J. 2006. 42, Issue 9.
P. 2098-2107.
https://doi.org/10.3390/polym13050745
33. Chiu F.-C., Li B.-H., Jiang J.-Y. Syndiotactic
polystyrene/multi-walled carbon nanotube
nanocomposites: polymorphism, thermal properties,
electrical conductivity, and rheological properties.
Compos. - A: Appl. Sci. Manuf. 2012. 43, No 12.
P. 2230-2240.
https://doi.org/10.1016/j.compositesa.2012.08.002
34. Al-Seady M.A., Grmasha R.A., Al-Aaraji N.A.-H.,
Abduljalil H.M. Investigation of the adsorption
mechanism of methane gas in graphene and copper-
doped nano-ribbon using density function theory. J.
Phys.: Conf. Ser. 2021. 1879, Issue 3. P. 032099.
http://doi.org/10.1088/1742-6596/1879/3/032099
35. Gaabour L. Effect of the addition of TiO 2
nanoparticles on structural and dielectric properties
of polystyrene/polyvinyl chloride polymer blend.
AIP Adv. 2021. 11, Issue 10.
https://doi.org/10.1063/5.0062445
36. Meftah Y., Bekker D., Benhaoua B. et al. Post-
annealing effect on structural and optical properties
of (?-Fe 2 O 3 ) thin films prepared by spray pyrolysis
with moving nozzle. Digest J. Nanomater.
Biostruct. 2018. 13. P. 465-474.
37. Hassanien A.S., Akl A.A. Optical characteristics of
iron oxide thin films prepared by spray pyrolysis
technique at different substrate temperatures. Appl.
Phys. A. 2018. 124, Issue 11. P. 752.
https://doi.org/10.1007/s00339-018-2180-6
38. Habeeb M.A., Hashim A., Mohammed R.M. Prepa-
ration and investigation of structural and dielectric
properties of PEO-PVA-Fe 2 O 3 nanocomposites for
electronic nanodevices. Nanosystems, Nanomate-
rials, Nanotechnologies. 2023. 21, Issue 3.
https://doi.org/10.15407/nnn.21.03.513
39. Kadhim A.F., Hashim A. Fabrication and
augmented structural optical properties of
PS/SiO 2 /SrTiO 3 hybrid nanostructures for optical
and photonics applications. Opt. Quant. Electron.
2023. 55, No 5. P. 432.
https://doi.org/10.1007/s11082-023-04699-8
| |
|
|