Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 183-193 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.183


References


1. Fu M.L., Antonov E.E., Manko D.Yu. et al. Micro- prismatic Fresnel lens for formation of uniform light circle. IEEE Photonics J. 2021. 13, No 3. P. 2200108. http://doi.org/10.1109/JPHOT.2021.3072538
2. Fu M.L., Antonov E.E., Lysenko V.S. et al. Uni- form illumination of concentrated sunlight in photo- voltaic solar modules with plane-focusing Fresnel lenses. IEEE Photonics J. 2023. 15, No 4. P. 5008080. http://doi.org/10.1109/JPHOT.2023.3288155
3. Benitez P., Minano J.C., Zamora P. et al. High performance Fresnel-based photovoltaic concen- trator. Opt. Express. 2010. 18(S1). P. A25-A40. http://doi.org/10.1364/OE.18.000A25
4. Sornek K., Filipowicz M., Jasek J. The use of Fresnel lenses to improve the efficiency of photovoltaic modules for building-integrated concentrating photovoltaic systems. J. Sustain. Dev. Energy, Water Environ. Syst. 2018. 6, No 3. P. 415-426. http://doi.org/10.13044/j.sdewes.d6.0204
5. Sahin F.E., Y?lmaz M. High concentration photovoltaics (HCPV) with diffractive secondary optical elements. Photonics. 2019. 6. P. 68. http://doi.org/10.3390/photonics6020068
6. Xie W.T., Dai Y.I., Wang R.Z., Sumathy K. Concentrated solar energy applications using Fresnel lenses: A review. Renew. Sust. Energ. Rev.
2011. 15. P. 2588-2606. http://doi.org/10.1016/j.rser.2011.03.031
7. Baig H., Heasman K.C., Mallick T.K. Nonuniform illumination in concentrating solar cells. Renew. Sust. Energ. Rev. 2012. 16. P. 5890-5909. http://doi.org/10.1016/j.rser.2012.06.020
8. Kiyaee S., Saboohi Ya., Moshfegh A.Z. A new de- signed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells. Energy Conv. Manag. 2021. 230. P. 113782. http://doi.org/10.1016/j.enconman.2020.113782
9. Zhang Z., Yan J., Kuriyagawa T. Manufacturing technologies toward extreme precision. Int. J. Exteme Manuf. 2019. 1. P. 022001. http://doi.org/10.1088/2631-7990/ab1ff1
10. Yamada N., Okamoto K. Experimental measure- ments of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation. Opt. Express. 2014. 22, No 101. P. A28- A34. http://doi.org/10.1364/OE.22.000A28
11. Zhang J.J., Qu Z.G., Zhang J.F. Diode model of nonuniform irradiation treatment to predict multiscale solar-electrical conversion for the concentrating plasmonic photovoltaic system. Appl. Energy. 2022. 324. P. 119698. https://doi.org/10.1016/j.apenergy.2022.119698
12. Bachhav C.Y., Sonawwanay P.D. Study on design and performance enhancement of Fresnel lens solar concentrator. Mater. Today: Proc. 2022. 56, No 5. P. 2873-2879. http://doi.org/10.1016/j.matpr.2021.10.168
13. Hayashi N., Inoue D., Matsumoto M. et al. High- efficiency thin and compact concentrator photo- voltaics with micro-solar cells directly attached to a lens array. Opt. Express. 2015. 23, No 11. P. A594- A602. http://doi.org/10.1364/OE.23.00A594
14. Beltagy H. A secondary reflector geometry optimization of a Fresnel type solar concentrator. Energy Conv. Manag. 2023. 284. P. 116974. http://doi.org/10.1016/j.encnman.2023.116974
15. Montanet E., Rodat S., Falcoz Q., Roget F. Influence of topography on the optical performances of a Fresnel linear asymmetrical concentrator array: The case of the ELLO solar power plant. Energy. 2023. 274. P. 127310. http://doi.org/10.1016/j.energy.2023.127310
16. Ju X., Pan X., Zhang Z. et al. Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under nonuniform illumination. Appl Energy. 2019. 250. P. 904-915. http://doi.org/10.1016/j.apenergy.2019.05.083
17. Antonov E.E., Lapchuk A.S., Petrov V.V. et al. Photodetector module of optoelectronic control systems for tracking the moving objects. SPQEO.
2022. 25. P. 315-322. http://doi.org/10.15407/spqeo25.03.315
18. Sultanova N., Kasarova S. and Nikolov I. Disper- sion properties of optical polymers. Acta Phys. Pol. A. 2009. 116. P. 585-587. http://doi.org/10.12693/APhysPolA.116.585
19. Petrov V., Kryuchyn A., Antonov E. et al. Optical Phenomena in Microprism Diagnostic Set KK-42. Proc. SPIE. 2011. 8011. P. 80119A. 22 General Congress on Optics “ICO-22”, 15-19 August, 2011, Puebla, Mexico. http://doi.org/10.1117/12.900751
20. Fu M.L., Antonov E., Manko D. et al. Achromatic refractive-diffractive double-relief microprisms. Opt. Laser Eng. 2020. 126. P. 105903. http://doi.org/10.1016/j.optlaseng.2019.105903
21. Brinksmeier E., Glabe R., Schonemann L. Diamond micro chiseling of large-scale retroreflective arrays. Precis. Eng. 2012. 36. P. 650-657. http://doi.org/10.1016/j.precisioneng.2012.06.001
22. Tan N.Y.J., Lim Z.H., Zhou G. et al. Design and fabrication of composite polygonal Fresnel lenses. Opt. Express. 2021. 29, No 22. P. 36516-36534. http://doi.org/10.1364/OE.436290
23. Tan N.Y.J., Neo D.W.K., Zhang X. et al. Ultra-pre- cision direct diamond shaping of functional micro features. J. Manuf. Process. 2021. 64. P. 209-223. http://doi.org/10.1016/j.jmapro.2020.12.064
24. Jmage J Program. http://soft.mydiv.net/win/download-ImageJ.html
25. Ahmadpour A., Dejamkhooy A., Shayeghi H. Opti- mization and modelling of linear Fresnel reflector solar concentrator using various methods based on Monte Carlo ray-trace. Solar Energy. 2022. 245. P. 67-79. http://doi.org/10.1016/j.solener.2022.09.006
26. Shen H., Wang G. A tetrahedron-based inhomo- geneous Monte Carlo optical simulator. Phys. Med. Biol. 2010. 55, No 4. P. 947-962. http://doi.org/10.1088/0031-9155/55/4/003
27. Campeau N., Wei A., Gajjar A. et al. Assessing tissue interrogation volume of an implantable optical sensor using TraceRro ray tracing software. Multiscale Imaging and Spectroscopy. 2024. P. 12827. http://doi.org/10.1117/12.3003431