Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 183-193 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.183
References
1. Fu M.L., Antonov E.E., Manko D.Yu. et al. Micro-
prismatic Fresnel lens for formation of uniform light
circle. IEEE Photonics J. 2021. 13, No 3. P. 2200108.
http://doi.org/10.1109/JPHOT.2021.3072538
2. Fu M.L., Antonov E.E., Lysenko V.S. et al. Uni-
form illumination of concentrated sunlight in photo-
voltaic solar modules with plane-focusing Fresnel
lenses. IEEE Photonics J. 2023. 15, No 4. P. 5008080.
http://doi.org/10.1109/JPHOT.2023.3288155
3. Benitez P., Minano J.C., Zamora P. et al. High
performance Fresnel-based photovoltaic concen-
trator. Opt. Express. 2010. 18(S1). P. A25-A40.
http://doi.org/10.1364/OE.18.000A25
4. Sornek K., Filipowicz M., Jasek J. The use of
Fresnel lenses to improve the efficiency of
photovoltaic modules for building-integrated
concentrating photovoltaic systems. J. Sustain. Dev.
Energy, Water Environ. Syst. 2018. 6, No 3. P. 415-426. http://doi.org/10.13044/j.sdewes.d6.0204
5. Sahin F.E., Y?lmaz M. High concentration
photovoltaics (HCPV) with diffractive secondary
optical elements. Photonics. 2019. 6. P. 68.
http://doi.org/10.3390/photonics6020068
6. Xie W.T., Dai Y.I., Wang R.Z., Sumathy K.
Concentrated solar energy applications using
Fresnel lenses: A review. Renew. Sust. Energ. Rev.
2011. 15. P. 2588-2606.
http://doi.org/10.1016/j.rser.2011.03.031
7. Baig H., Heasman K.C., Mallick T.K. Nonuniform
illumination in concentrating solar cells. Renew.
Sust. Energ. Rev. 2012. 16. P. 5890-5909.
http://doi.org/10.1016/j.rser.2012.06.020
8. Kiyaee S., Saboohi Ya., Moshfegh A.Z. A new de-
signed linear Fresnel lens solar concentrator based
on spectral splitting for passive cooling of solar
cells. Energy Conv. Manag. 2021. 230. P. 113782.
http://doi.org/10.1016/j.enconman.2020.113782
9. Zhang Z., Yan J., Kuriyagawa T. Manufacturing
technologies toward extreme precision. Int. J.
Exteme Manuf. 2019. 1. P. 022001.
http://doi.org/10.1088/2631-7990/ab1ff1
10. Yamada N., Okamoto K. Experimental measure-
ments of a prototype high concentration Fresnel
lens CPV module for the harvesting of diffuse solar
radiation. Opt. Express. 2014. 22, No 101. P. A28-
A34. http://doi.org/10.1364/OE.22.000A28
11. Zhang J.J., Qu Z.G., Zhang J.F. Diode model of
nonuniform irradiation treatment to predict
multiscale solar-electrical conversion for the
concentrating plasmonic photovoltaic system. Appl.
Energy. 2022. 324. P. 119698.
https://doi.org/10.1016/j.apenergy.2022.119698
12. Bachhav C.Y., Sonawwanay P.D. Study on design
and performance enhancement of Fresnel lens solar
concentrator. Mater. Today: Proc. 2022. 56, No 5.
P. 2873-2879.
http://doi.org/10.1016/j.matpr.2021.10.168
13. Hayashi N., Inoue D., Matsumoto M. et al. High-
efficiency thin and compact concentrator photo-
voltaics with micro-solar cells directly attached to a
lens array. Opt. Express. 2015. 23, No 11. P. A594-
A602. http://doi.org/10.1364/OE.23.00A594
14. Beltagy H. A secondary reflector geometry
optimization of a Fresnel type solar concentrator.
Energy Conv. Manag. 2023. 284. P. 116974.
http://doi.org/10.1016/j.encnman.2023.116974
15. Montanet E., Rodat S., Falcoz Q., Roget F.
Influence of topography on the optical
performances of a Fresnel linear asymmetrical
concentrator array: The case of the ELLO solar
power plant. Energy. 2023. 274. P. 127310.
http://doi.org/10.1016/j.energy.2023.127310
16. Ju X., Pan X., Zhang Z. et al. Thermal and electrical
performance of the dense-array concentrating
photovoltaic (DA-CPV) system under nonuniform
illumination. Appl Energy. 2019. 250. P. 904-915.
http://doi.org/10.1016/j.apenergy.2019.05.083
17. Antonov E.E., Lapchuk A.S., Petrov V.V. et al.
Photodetector module of optoelectronic control
systems for tracking the moving objects. SPQEO.
2022. 25. P. 315-322.
http://doi.org/10.15407/spqeo25.03.315
18. Sultanova N., Kasarova S. and Nikolov I. Disper-
sion properties of optical polymers. Acta Phys. Pol.
A. 2009. 116. P. 585-587.
http://doi.org/10.12693/APhysPolA.116.585
19. Petrov V., Kryuchyn A., Antonov E. et al. Optical
Phenomena in Microprism Diagnostic Set KK-42.
Proc. SPIE. 2011. 8011. P. 80119A. 22 General
Congress on Optics “ICO-22”, 15-19 August, 2011,
Puebla, Mexico. http://doi.org/10.1117/12.900751
20. Fu M.L., Antonov E., Manko D. et al. Achromatic
refractive-diffractive double-relief microprisms.
Opt. Laser Eng. 2020. 126. P. 105903.
http://doi.org/10.1016/j.optlaseng.2019.105903
21. Brinksmeier E., Glabe R., Schonemann L. Diamond
micro chiseling of large-scale retroreflective arrays.
Precis. Eng. 2012. 36. P. 650-657.
http://doi.org/10.1016/j.precisioneng.2012.06.001
22. Tan N.Y.J., Lim Z.H., Zhou G. et al. Design and
fabrication of composite polygonal Fresnel lenses.
Opt. Express. 2021. 29, No 22. P. 36516-36534.
http://doi.org/10.1364/OE.436290
23. Tan N.Y.J., Neo D.W.K., Zhang X. et al. Ultra-pre-
cision direct diamond shaping of functional micro
features. J. Manuf. Process. 2021. 64. P. 209-223.
http://doi.org/10.1016/j.jmapro.2020.12.064
24. Jmage J Program.
http://soft.mydiv.net/win/download-ImageJ.html
25. Ahmadpour A., Dejamkhooy A., Shayeghi H. Opti-
mization and modelling of linear Fresnel reflector
solar concentrator using various methods based on
Monte Carlo ray-trace. Solar Energy. 2022. 245. P.
67-79. http://doi.org/10.1016/j.solener.2022.09.006
26. Shen H., Wang G. A tetrahedron-based inhomo-
geneous Monte Carlo optical simulator. Phys. Med.
Biol. 2010. 55, No 4. P. 947-962.
http://doi.org/10.1088/0031-9155/55/4/003
27. Campeau N., Wei A., Gajjar A. et al. Assessing
tissue interrogation volume of an implantable
optical sensor using TraceRro ray tracing software.
Multiscale Imaging and Spectroscopy. 2024.
P. 12827. http://doi.org/10.1117/12.3003431
| |
|
|