Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 194-200 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.194


References


1. Pekar G.S., Singaevsky A.F. Na-doped optical germanium bulk crystals. Appl. Phys. A. 2012. 108, No 3. P. 657-664. https://doi.org/10.1007/s00339-012-6947-x
2. Pekar G.S., Singaevsky A.F., Lokshin M.M. Sodium-doped germanium crystals as a material for infrared optics and detector technique. Advances in Microelectronics: Reviews. Book Series. 2019. 2. Ð. 89-125.
3. Ordu M., Basu S.N. Recent progress in germanium- core optical fibers for mid-infrared optics. Infrared Phys. Technol. 2020. 111. P. 103507. https://doi.org/10.1016/j.infrared.2020.103507
4. Zhao R., Zhao X., Sun S. et al. Nonlinear optical characteristics of germanium and its application for generating bound state solitons within Er-doped fiber laser. Results Phys. 2023. 51. P. 106604. https://doi.org/10.1016/j.rinp.2023.106604
5. Tani K., Okumura T., Oda K., Deura M., Ido T. On- chip optical interconnection using integrated germanium light emitters and photodetectors. Opt. Express. 2021. 29, No. 18. P. 28021-28036. https://doi.org/10.1364/OE.432324
6. Du H., Wang Y., Li Y. et al. Fabrication of the optical lens on single-crystal germanium surfaces using the laser-assisted diamond turning. Intern. J. Adv. Manufact. Technol. 2024. 132, No 9-10. Ð. 4785-4794. https://doi.org/10.1007/s00170-024- 13600-0.
7. Liu Y.-H., Lin C.-P., Chen P.-W. et al. Normal- incidence germanium photodetectors integrated with polymer microlenses for optical fiber commu- nication applications. Sensors. 2024. 24, No 13. P. 4221. https://doi.org/10.3390/s24134221
8. Fretty P. Potential supply issues have optics manufacturers and the U.S. government looking at alternative materials to head off disaster. Optics Industry Addresses the Germanium Issue. July 25,
2024. https://www.laserfocusworld.com/optics/ article/55127439/lightpath-technologies-inc-optics- industry-addresses-the-germanium-issue.
9. Chen W.-S., Chang B.-C., Shuai C.-K. Improve subsequent leaching efficiency and extraction rate of germanium in optical fibre cables with pre- treatment. IOP Conf. Series: Mater. Sci. Eng. 2020.
720. P. 012005. https://doi.org/10.1088/1757-899X/720/1/012005
10. Tenne R., Flaisher H. Photoelectrochemical etching of ZnSe and nonuniform charge flow in Schottky barriers. Phys. Rev. B. 1984. 29, No 10. Ð. 5799-5804. https://doi.org/10.1103/PhysRevB.29.5799
11. Vorobyov Yu.V., Dobovolsky V.N., Strikha V.I. Methods for the Study of Semiconductors. Kyiv: Vyssha Shkola, 1988 (in Ukrainian).
12. TU 48-4-522-89. Crystals of optical germanium. TU 2001-04-09 (in Ukrainian).
13. Walker P., Tarn W.H. Handbook of Metal Etchants. CRC Press LLC, 1991.
14. US Patent ¹ 5,445,706. Aug. 29, 1995. Wet treatment adapted for mirror etching ZnSe. Y. Okuno, H. Tamura, T. Maruyama.
15. Malanych G.P., Stanetska À.S., Stratiychuk I.B., Tomashyk V.M. Technological scheme of mechanical and chemical plates treatment of PbTe and Pb 1-x Sn x Te solid solutions for obtaining polished surface of single crystal. Mater. Today: Proc. 2021. 35, No 4. Ð. 558-562. https://doi.org/10.1016/j.matpr.2019.10.055
16. Bishop P.J., Gibson A.F. Absorption coefficient of germanium at 10.6 ?. Appl. Optics. 1973. 12, No 11. Ð. 2549-2550. https://doi.org/10.1364/AO.12.002549