Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 194-200 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.194
References
1. Pekar G.S., Singaevsky A.F. Na-doped optical
germanium bulk crystals. Appl. Phys. A. 2012. 108,
No 3. P. 657-664. https://doi.org/10.1007/s00339-012-6947-x
2. Pekar G.S., Singaevsky A.F., Lokshin M.M.
Sodium-doped germanium crystals as a material for
infrared optics and detector technique. Advances in
Microelectronics: Reviews. Book Series. 2019. 2.
Ð. 89-125.
3. Ordu M., Basu S.N. Recent progress in germanium-
core optical fibers for mid-infrared optics. Infrared
Phys. Technol. 2020. 111. P. 103507.
https://doi.org/10.1016/j.infrared.2020.103507
4. Zhao R., Zhao X., Sun S. et al. Nonlinear optical
characteristics of germanium and its application for
generating bound state solitons within Er-doped
fiber laser. Results Phys. 2023. 51. P. 106604.
https://doi.org/10.1016/j.rinp.2023.106604
5. Tani K., Okumura T., Oda K., Deura M., Ido T. On-
chip optical interconnection using integrated
germanium light emitters and photodetectors. Opt.
Express. 2021. 29, No. 18. P. 28021-28036.
https://doi.org/10.1364/OE.432324
6. Du H., Wang Y., Li Y. et al. Fabrication of the
optical lens on single-crystal germanium surfaces
using the laser-assisted diamond turning. Intern. J.
Adv. Manufact. Technol. 2024. 132, No 9-10.
Ð. 4785-4794. https://doi.org/10.1007/s00170-024-
13600-0.
7. Liu Y.-H., Lin C.-P., Chen P.-W. et al. Normal-
incidence germanium photodetectors integrated with
polymer microlenses for optical fiber commu-
nication applications. Sensors. 2024. 24, No 13.
P. 4221. https://doi.org/10.3390/s24134221
8. Fretty P. Potential supply issues have optics
manufacturers and the U.S. government looking at
alternative materials to head off disaster. Optics
Industry Addresses the Germanium Issue. July 25,
2024. https://www.laserfocusworld.com/optics/
article/55127439/lightpath-technologies-inc-optics-
industry-addresses-the-germanium-issue.
9. Chen W.-S., Chang B.-C., Shuai C.-K. Improve
subsequent leaching efficiency and extraction rate of
germanium in optical fibre cables with pre-
treatment. IOP Conf. Series: Mater. Sci. Eng. 2020.
720. P. 012005.
https://doi.org/10.1088/1757-899X/720/1/012005
10. Tenne R., Flaisher H. Photoelectrochemical etching
of ZnSe and nonuniform charge flow in Schottky
barriers. Phys. Rev. B. 1984. 29, No 10. Ð. 5799-5804. https://doi.org/10.1103/PhysRevB.29.5799
11. Vorobyov Yu.V., Dobovolsky V.N., Strikha V.I.
Methods for the Study of Semiconductors. Kyiv:
Vyssha Shkola, 1988 (in Ukrainian).
12. TU 48-4-522-89. Crystals of optical germanium. TU
2001-04-09 (in Ukrainian).
13. Walker P., Tarn W.H. Handbook of Metal Etchants.
CRC Press LLC, 1991.
14. US Patent ¹ 5,445,706. Aug. 29, 1995. Wet
treatment adapted for mirror etching ZnSe.
Y. Okuno, H. Tamura, T. Maruyama.
15. Malanych G.P., Stanetska À.S., Stratiychuk I.B.,
Tomashyk V.M. Technological scheme of
mechanical and chemical plates treatment of PbTe
and Pb 1-x Sn x Te solid solutions for obtaining polished
surface of single crystal. Mater. Today: Proc. 2021.
35, No 4. Ð. 558-562.
https://doi.org/10.1016/j.matpr.2019.10.055
16. Bishop P.J., Gibson A.F. Absorption coefficient of
germanium at 10.6 ?. Appl. Optics. 1973. 12, No 11.
Ð. 2549-2550.
https://doi.org/10.1364/AO.12.002549
| |
|
|