Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 208-214 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.208
References
1. Murad M.A.S., Arnous A.H., Biswas A. et al.
Suppressing internet bottleneck with Kudryashov’s
extended version of self-phase modulation and
fractional temporal evolution. J. Opt. 2024.
https://doi.org/10.1007/s12596-024-01937-4
2. Murad M.A.S. Optical solutions for perturbed
conformable Fokas-Lenells equation via
Kudryashov auxiliary equation method. Mod. Phys.
Lett. B. 2025. 39, No 07. P. 2450418.
https://doi.org/10.1142/S0217984924504189
3. Murad M.A.S., Faridi W.A., Iqbal M. et al.
Analysis of Kudryashov’s equation with confor-
mable derivative via the modified Sardar sub-
equation algorithm. Results Phys. 2024. 60. P.
107678. https://doi.org/10.1016/j.rinp.2024.107678
4. Gepreel K.A., Zayed E.M.E., Alngar M.E.M. et al.
Optical solitons with Kudryashov’s arbitrary form
of refractive index and generalized non-local
nonlinearity. Optik. 2021. 243. P. 166723.
https://doi.org/10.1016/j.ijleo.2021.166723
5. Khalil R., Horani M.A., Yousef A., Sababheh M. A
new definition of fractional derivative. J. Comput.
Appl. Math. 2014. 264. P. 65-70.
https://doi.org/10.1016/j.cam.2014.01.002
6. W. Razzaq, M. Habib, M. Nadeem et al. Solitary
wave solutions of conformable time fractional
equations using modified simplest equation method.
Complexity. 2022. 2022. Article ID 8705388 (9 P.).
https://doi.org/10.1155/2022/8705388
7. Ekici M., Sarmasik C.A. Certain analytical
solutions of the concatenation model with a
multiplicative white noise in optical fibers.
Nonlinear Dyn. 2024. 112, Issue 11. P. 9459-9476.
https://doi.org/10.1007/s11071-024-09478-y
8. Yalci A.M., Elkici M. Stationary optical solitons
with complex Ginzburg-Landau equation having
nonlinear chromatic dispersion. Opt. Quant.
Electron. 2022. 54, Issue 3. Art. 167.
https://doi.org/10.1007/s11082-022-03557-3
9. Jawad A.J.M., Abu-AlShaeer M.J. Highly
dispersive optical solitons with cubic law and
cubic-quintic-septic law nonlinearities by two
methods. Rafidain J. Eng. Sci. 2023. 1, Issue 1.
P. 1-8. https://doi.org/10.61268/sapgh524
10. Jihad N., Almuhsan M.A.A. Evaluation of
impairment mitigations for optical fiber
communications using dispersion compensation
techniques. Rafidain J. Eng. Sci. 2023. 1, Issue 1.
P. 81-92. https://doi.org/10.61268/0dat0751
11. Dakova-Mollova A., Miteva P., Slavchev V. et al.
Propagation of broad-band optical pulses in
dispersionless media. Ukr. J. Phys. Opt. 2024. 25,
Issue 5. P. S1102-S1110. https://doi.org/
10.3116/16091833/ukr.j.phys.opt.2024.s1102.
12. Li N., Chen Q., Triki H. et al. Bright and dark
solitons in a (2+1)-dimensional spin-1 Bose-
Einstein condensates. Ukr. J. Phys. Opt. 2024. 25,
Issue 5. P. S1060-S1074. https://doi.org/10.3116/
16091833/Ukr.J.Phys.Opt.2024.S1060.
13. Wang M.-Y. Optical solitons with perturbed complex
Ginzburg-Landau equation in Kerr and cubic-
quintic-septic nonlinearity. Results Phys. 2022. 33.
P. 105077. https://doi.org/10.1016/j.rinp.2021.105077
14. Samir I., Ahmed H.M. Retrieval of solitons and
other wave solutions for stochastic nonlinear
Schr?dinger equation with non-local nonlinearity
using the improved modified extended tanh-
function method. J. Opt. 2024.
https://doi.org/10.1007/s12596-024-01776-3
15. Tang L. Phase portraits and multiple optical solitons
perturbation in optical fibers with the nonlinear
Fokas-Lenells equation. J. Opt. 2023. 52. P. 2214-2223. https://doi.org/10.1007/s12596-023-01097-x
| |
|
|