Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 208-214 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.208


References


1. Murad M.A.S., Arnous A.H., Biswas A. et al. Suppressing internet bottleneck with Kudryashov’s extended version of self-phase modulation and fractional temporal evolution. J. Opt. 2024. https://doi.org/10.1007/s12596-024-01937-4
2. Murad M.A.S. Optical solutions for perturbed conformable Fokas-Lenells equation via Kudryashov auxiliary equation method. Mod. Phys. Lett. B. 2025. 39, No 07. P. 2450418. https://doi.org/10.1142/S0217984924504189
3. Murad M.A.S., Faridi W.A., Iqbal M. et al. Analysis of Kudryashov’s equation with confor- mable derivative via the modified Sardar sub- equation algorithm. Results Phys. 2024. 60. P.
107678. https://doi.org/10.1016/j.rinp.2024.107678
4. Gepreel K.A., Zayed E.M.E., Alngar M.E.M. et al. Optical solitons with Kudryashov’s arbitrary form of refractive index and generalized non-local nonlinearity. Optik. 2021. 243. P. 166723. https://doi.org/10.1016/j.ijleo.2021.166723
5. Khalil R., Horani M.A., Yousef A., Sababheh M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014. 264. P. 65-70. https://doi.org/10.1016/j.cam.2014.01.002
6. W. Razzaq, M. Habib, M. Nadeem et al. Solitary wave solutions of conformable time fractional equations using modified simplest equation method. Complexity. 2022. 2022. Article ID 8705388 (9 P.). https://doi.org/10.1155/2022/8705388
7. Ekici M., Sarmasik C.A. Certain analytical solutions of the concatenation model with a multiplicative white noise in optical fibers. Nonlinear Dyn. 2024. 112, Issue 11. P. 9459-9476. https://doi.org/10.1007/s11071-024-09478-y
8. Yalci A.M., Elkici M. Stationary optical solitons with complex Ginzburg-Landau equation having nonlinear chromatic dispersion. Opt. Quant. Electron. 2022. 54, Issue 3. Art. 167. https://doi.org/10.1007/s11082-022-03557-3
9. Jawad A.J.M., Abu-AlShaeer M.J. Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods. Rafidain J. Eng. Sci. 2023. 1, Issue 1. P. 1-8. https://doi.org/10.61268/sapgh524
10. Jihad N., Almuhsan M.A.A. Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Rafidain J. Eng. Sci. 2023. 1, Issue 1. P. 81-92. https://doi.org/10.61268/0dat0751
11. Dakova-Mollova A., Miteva P., Slavchev V. et al. Propagation of broad-band optical pulses in dispersionless media. Ukr. J. Phys. Opt. 2024. 25, Issue 5. P. S1102-S1110. https://doi.org/ 10.3116/16091833/ukr.j.phys.opt.2024.s1102.
12. Li N., Chen Q., Triki H. et al. Bright and dark solitons in a (2+1)-dimensional spin-1 Bose- Einstein condensates. Ukr. J. Phys. Opt. 2024. 25, Issue 5. P. S1060-S1074. https://doi.org/10.3116/ 16091833/Ukr.J.Phys.Opt.2024.S1060.
13. Wang M.-Y. Optical solitons with perturbed complex Ginzburg-Landau equation in Kerr and cubic- quintic-septic nonlinearity. Results Phys. 2022. 33. P. 105077. https://doi.org/10.1016/j.rinp.2021.105077
14. Samir I., Ahmed H.M. Retrieval of solitons and other wave solutions for stochastic nonlinear Schr?dinger equation with non-local nonlinearity using the improved modified extended tanh- function method. J. Opt. 2024. https://doi.org/10.1007/s12596-024-01776-3
15. Tang L. Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas-Lenells equation. J. Opt. 2023. 52. P. 2214-2223. https://doi.org/10.1007/s12596-023-01097-x