Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 221-231 (2025).
DOI: https://doi.org/10.15407/spqeo28.02.221


References


1. Dere K.P., Del Zanna G., Young P.R., and Landi E. CHIANTI - An Atomic Database for Emission Lines. XVII. Version 10.1: Revised Ionization and Recombination Rates and Other Updates. Astrophys. J. Suppl. Ser. 2023. 268, No 2. https://doi.org/10.1103/10.3847/1538-4365/acec79
2. Hinkel N.R., Timmes F.X., Young P.A. et al. Stellar Abundances in the Solar Neighborhood: The Hypatia Catalog. Astron. J. 2014. 148, No 3. https://doi.org/10.1088/0004-6256/148/3/54
3. Matteucci F. Introduction to galactic chemical evo- lution. J. Phys.: Conf. Ser. 2015. 703. P. 012004. https://doi.org/10.1088/1742-6596/703/1/012004
4. Rybizki J., Just A., Rix H.-W. Chempy: A flexible chemical evolution model for abundance fitting. Astron. Astrophys. 2017. 605. P. A59. https://doi.org/10.1051/0004-6361/201730522
5. Jofr? P., Heiter U., Soubiran C. Accuracy and pre- cision of industrial stellar abundances. Annu. Rev. Astron. Astrophys. 2019. 57. P. 571-616. https:// doi.org/10.1146/annurev-astro-091918-104509.
6. Young, P.R. Applications of atomic data to studies of the Sun. Eur. Phys. J. D. 2024. 78, No 130. https://doi.org/10.1140/epjd/s10053-024-00915-6
7. G?zel?imen F., Er A., ?zt?rk I.K. et al. Inves- tigation of the hyperfine structure of weak atomic Vanadium lines by means of Fourier transform spec- troscopy. J. Phys. B. 2015. 48, No 11. P. 115005. https://doi.org/10.1088/0953-4075/48/11/115005
8. Barklem P.S. Accurate abundance analysis of late- type stars: advances in atomic physics. Astron. Astrophys. Rev. 2016. 24, No 9. https://doi.org/10.1007/s00159-016-0095-9
9. Col?n C., de Andr?s-Garc a .I., Isidoro-Garca and Moya A. Theoretical stark broadening parameters for UV-blue spectral lines of neutral vanadium in the solar and metal-poor star HD 84937 spectra. Atoms. 2020. 8, No 4. P. 64. https://doi.org/10.3390/atoms8040064
10. Finkenthal M., Bell R.E., Moos H.W., and TFR Group. Forbidden (M1) lines in the spectra of titanium, vanadium, chromium, iron, and nickel observed in a tokamak plasma. J. Appl. Phys. 1984.
56. P. 2012-2016. https://doi.org/10.1063/1.334243
11. Kovtun Yu.V., Kuprin A.S., Shapoval A.N. et al. Optical emission spectroscopy of vanadium cathodic arc plasma at different nitrogen pressure. J. Appl. Phys. 2023. 134. P. 243301. https://doi.org/10.1063/5.0177931
12. Muroga T., Chen J.M., Chernov V.M. et al. Present status of vanadium alloys for fusion applications. J. Nucl. Mater. 2014. 455. P. 263-268. https://doi.org/10.1016/j.jnucmat.2014.06.025
13. Jiang S.-N., Zhou F.-J., Zhang G.-W. et al. Recent progress of vanadium-based alloys for fusion application. Tungsten. 2021. 3. P. 382-392. https://doi.org/10.1007/s42864-021-00107-4
14. Butt L., Dickinson-Lomas A., Freer M. et al. Research and development on vanadium alloys for fusion breeder blanket application. Fusion Eng. Des. 2025. 210. P. 114739. https://doi.org/10.1016/j.fusengdes.2024.114739
15. Ninomiya H., Abe M., Takashima N. Laser action of optically pumped atomic vanadium vapor. Appl. Phys. Lett. 1991. 58. P. 1819-1821. https://doi.org/10.1063/1.105242
16. Yoshida H., Takashima N., Ninomiya H. New laser action of optically pumped atomic vanadium vapor. J. Appl. Phys. 1992. 71. P. 1044-1045. https://doi.org/10.1063/1.350395
17. Ninomiya H., Yoshida H., Takashima N. Temporal behavior of population densities of V atoms in an optically pumped V vapor laser. J. Appl. Phys.
1992. 71. P. 3181-3185. https://doi.org/10.1063/1.350960 18 Ganeev R.A., Resonance Enhancement of Harmonics in Metal-Ablated Plasmas: Early Studies, Chap. 4 in: Resonance Enhancement in Laser-Produced Plasmas. P. 139-211. John Wiley & Sons, Inc., 2018. https://doi.org/10.1002/9781119472346.ch4.
19. Zatsarinny O. BSR: B-spline atomic R-matrix codes. Comput. Phys. Commun. 2006. 174, No 4. P. 273-356. https://doi.org/10.1016/j.cpc.2005.10.006
20. Gedeon V., Gedeon S., Lazur V. et al. Low-energy outer-shell photo-detachment of the negative ion of aluminum. J. Phys. B. 2018. 51, No 3. P. 035004. https://doi.org/10.1088/1361-6455/aa9c37
21. Gedeon V.F., Lazur V.Yu., Gedeon S.V., Yegiazarian O.V. Resonances in the electron scattering from a calcium atom. J. Phys. Stud. 2022. 26, No 1. P. 1301-1319. https://doi.org/10.30970/jps.26.1301
22. Gedeon V.F., Lazur V.Yu., Gedeon S.V., Yegiazarian O.V. Resonance structure of cross- sections of slow-electron scattering by calcium atom. Ukr. J. Phys. 2022. 67, No. 3. P. 161-182. https://doi.org/10.15407/ujpe67.3.161
23. Zatsarinny O., Bartschat K., Gedeon S. et al. Low- energy electron scattering from Ca atoms and photodetachment of Ca - . Phys. Rev. A. 2006. 74, No 5. P. 052708. https://doi.org/10.1103/PhysRevA.74.052708
24. Gedeon V., Gedeon S., Lazur V. et al. Electron scattering from silicon. Phys. Rev. A. 2012. 85, No 2. P. 022711. https://doi.org/10.1103/PhysRevA.85.022711
25. Gedeon V., Gedeon S., Lazur V. et al. B-spline R- matrix-with-pseudostates calculations for electron- impact excitation and ionization of fluorine. Phys. Rev. A. 2014. 89. No 5. P. 052713. https://doi.org/10.1103/PhysRevA.89.052713
26. Gedeon V., Gedeon S., Lazur V. et al. B-spline R- matrix-with-pseudostates calculations for electron collisions with aluminum. Phys. Rev. A. 2015. 92, No 5. P. 052701. https://doi.org/10.1103/PhysRevA.92.052701
27. Froese Fischer C., Godefroid M., Brage T. et al. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions. J. Phys. B.
2016. 49. P.182004. https://doi.org/10.1088/0953-4075/49/18/182004
28. Scharf O., Gaigalas G. Large scale multi- configuration Hartree-Fock calculation of the hyperfine structure of the ground state of vanadium. Cent. Eur. J. Phys. 2006. 4, No 1. P. 42-57. https://doi.org/10.1007/s11534-005-0005-7
29. Osanai Y., Ishikawa H., Miura N., Noro T. Excitation energies, electron affinities and ionization potentials of the transition metals V, Cr and Mn. Theor. Chem. Acc. 2001. 105. P. 437-445. https://doi.org/10.1007/s002140000234
30. Cowan R.D. The Theory of Atomic Structure and Spectra. Univ. California Press, Berkeley, CA,
1981.
31. Thorne A.P., Pickering J.C., Semeniuk J. The spectrum and term analysis of V I. Astrophys. J. Suppl. Ser. 2011. 192. No 1. P. 11. https://doi.org/10.1088/0067-0049/192/1/11
32. Saloman E.B., Kramida A. Critically evaluated energy levels, spectral lines, transition probabilities, and intensities of neutral vanadium (V I). Astrophys. J. Suppl. Ser. 2017. 231, No 2. P. 18. https://doi.org/10.3847/1538-4365/aa7e2a
33. Smirnov Y.M. Excitation cross sections for a vanadium atom. J. Appl. Spectrosc. 1995. 62, P. 996-1000. https://doi.org/10.1007/BF02606746
34. Smirnov Y.M. Excitation of 4 G°, 4 H°, and 4 I° levels of vanadium atom by slow electrons. High Temperature. 2001. 39. P. 37-42. https://doi.org/10.1023/A:1004162228700
35. Krasavin A.Y., Kuchenev A.N., Smirnov Y.M. Excitation cross sections of the vanadium atom. J. Appl. Spectrosc. 1982. 36. P. 575-580. https://doi.org/10.1007/bf00663667
36. el’nikov V.V., Smirnov Yu. . Excitation of vanadium atoms by electron impact. Opt. Spectrosc.
1982. 53, No 1. P. 27-32.
37. Peterkop R.K. Calculation of excitation cross sections and oscillator strengths for vanadium and manganese atoms. Opt. Spectrosc. 1985. 58, No 1. P. 7-10.
38. Kramida A., Ralchenko Yu., Reader J., and NIST ASD Team (2022). NIST Atomic Spectra Database (ver. 5.10). Available: https://physics.nist.gov/asd
39. Fischer C.F., Tachiev G., Gaigalas G., Godefroid M.R. An MCHF atomic-structure package for large- scale calculations. Comput. Phys. Commun. 2007. 176, No 8. P. 559-579. https://doi.org/10.1016/j.cpc.2007.01.006
40. Zatsarinny O., Fischer C.F. A general program for computing angular integrals of the Breit-Pauli Hamiltonian with non-orthogonal orbitals. Comput. Phys. Commun. 2000. 124, No 2-3. P. 247-289. https://doi.org/10.1016/S0010-4655(99)00441-5
41. Zatsarinny O., Fischer C.F. Atomic structure calculations using MCHF and BSR. Comput. Phys. Commun. 2009. 180, No 11. P. 2041-2065. https://doi.org/10.1016/j.cpc.2009.06.007
42. Tayal S.S., Zatsarinny O. Collision and radiative parameters for Cr II lines observed in stellar and nebular spectra. Astrophys. J. 2019. 888, No 1. P. 10. https://doi.org/10.3847/1538-4357/ab557b