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1. Introduction

The concept of highly dispersive optical solitons was
conceived slightly less than a decade ago. This idea came
on board when the chromatic dispersion (CD) runs low
which is the main source of dispersive effects for the
propagation of solitons through optical fibers. To
compensate for this low count, additional dispersive
effects were included so that the relation between CD and
self-phase modulation (SPM) effect stays balanced.
These dispersive effects stem from intermodal dispersion
(IMD), third-order dispersion (30D), fourth-order
dispersion (40D), fifth-order dispersion (50D) and sixth-
order dispersion (60D). It must be noted that these
higher-order  dispersions  naturally — have  their
shortcomings, namely the soliton radiation as well as the
drastic slow-down of solitons. However, these effects are
neglected by default.

It is now time to move on to the next chapter.
Therefore, upon turning the page, the concept of highly
dispersive effect is taken up in birefringent fibers. The
model for these solitons is addressed with the Kerr law of
SPM that automatically kicks in the so-called cross-phase

modulation (XPM) effect. It must be noted that the effect
of four-wave mixing is also neglected in this extended
version of the Manakov equation. Additionally, the study
of highly dispersive optical solitons for birefringent
fibers was already carried out and its soliton solutions
together with the conservation laws were all reported [1].
The current paper, however, revisits this concept in
birefringent fibers with the Kerr law of SPM. The
integrability scheme here is the extended auxiliary
equation approach. This comprehensive scheme reveals a
full spectrum of optical solitons along with additional
solutions that are in terms of the Weierstrass elliptic
functions. The details are exhibited in the rest of the
paper along with the parameter constraints, that are
necessary for the existence of these solitons, after a
succinct introduction to the model.

1.1. Mathematical model

The dimensionless form of the nonlinear Schrodinger’s
equation for highly dispersive optical solitons in
birefringent fibers with an account of Kerr’s law of
nonlinear refractive index can be written as [1]:
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i’ur + I’a’iux + a’lj‘-uxx + i’a’%uxxx + a’iuxxxx +

. 1 1 1y.,12 19,.02%., —

I‘a‘Euxxxxx + a‘éuxxxxxx + (bllu‘l + b! |'E;‘| J'Lt. - 0!
(1)

iv, + L'aivx + rxg v, T ia§ Vo T aivﬂn +

ia’gvxxx:r:r + agvxxxxxx + (bili;Il‘ + b"j |u|‘ji}‘ = ﬂ?
(2

where the real-valued coefficients a'j for 1<j<6

represent IMD, CD, 30D, 40D, 50D, and 60D,
respectively, along these two components of birefringent

fibers for I =1, 2. Also, b] (I =1, 2) represents SPM and
XPM.

2. Preliminary mathematical analysis

In this section, we will suppose that Egs. (2) and (3)
possess the following solutions [1-10]:

ulx,t) = H,(QexpliH (x, £)]. 3)
v(x.t) = Hy(DexpliH (x, £)].

and

f=x—ct Hiz,t) = —xx + Qt +c,. (4)

Assuming that ¢, x, Q and ¢, are all non-zero
parameters, where ¢ represents the soliton velocity, «
denotes its wave number, Q represents its frequency, and
¢o is the phase constant, we have real functions
H,(Z).H,(Z), and H(x.t) that represent the amplitude
and phase components of the soliton, respectively.
Egs. (1) and (2) may be changed to Egs. (5) and (6) by
isolating their real and imaginary parts. From this, we
can conclude that:

W agH,” () +(a} + Sadk — 15030, (0) +
(a} + 3:1%:«: —6aik? — 10aix® + 15aik 4]H () -
—(Q—-aix + aix® +ajx® —ajx® —aix® + afx®)

X H({)+biH({) + b3H,(HF () =0, (5)

Ry:aZHy" ({)+ (a} + SaZx — 15022 Hy  (3) +
(a3 + 3a2k — 6alxk? —10a2x® + 15a2x*)H,({) —
—(Q—ax+ aix® + aix? —ale® —alk® + aix®)
X Hy()+ biH3 ({) + biH,({HI () =0, (6)
and
%, (al — GaéxjHiE} () +
(al — 4alx —10alx® + 20alx®)H, ()
—(c— a] + 2ajk + 3aik® —4aix® —

—Salx* +6alx®)H,({) =0, (7)

F,:(al — Eaéx]Hé‘E} (O +

(a2 — 4aix — 10aZx? + 20aix®)H, ()
—(c —aj + 2a3x + 3a;3
—5alx* +6alx®)H,({) = 0. 8

2 _ 42,3 _
K da,x

Set
H. (D) =AH, (), 9)
is provided for 4 = 0,1. Now, Egs. (5)—(8) become

R,:alt,” () + (a} + 5alx — 15a2)H” () +
(al+ 3alx — 60:4 2 — 10alx® + 15aix*)H,({)
—[Q— aix + ajr® + azr® —ajx* —

—aik® +aix®)H, () + (b + A*BHHI({) =0,
(10)

Ry:afH,” () + (af +Sax — 1503 H,” () +

(a2 + 3alx — 6alx? — 10a2x® + 15a2x*)H, ({) +

—(Q—aix + aix® + aix?® —aix* —alk® +

+azx®)H, () + (biA* + bI)HF(() =0,

(11)
3y: (ol - 6ak)H;” () +
(a} — 4alx — 10alx® + 20aix®)H, ({)
—(c—al + 2alk + 3alx® — 4alx® —
( 1 2 3 4
—5alk* +6alx®)H, () =0, (12)

S, (a; — ﬁaéx]HiE} () +
(al — 4aix — 10alx® + 20ax®)H, () +
—(c—ai + 2a3jk + 3aix® — 4aix’® — 13)
—5alk* + 6aix®)H,({) = 0.
By equating the coefficients of the linearly independent
functions in equations (12) and (13) to zero, we obtain:

g

=1 =1.2, (14)

L
BaL

K =

c =a) — 2alk — 3ajx’ +4alx® +

, . (15)
-|-.':'ucr,::1rc‘1 - Ga‘E_KE, I1=1,2,

o —4aix —10alx® + 20akx® =0,  [=12. (16)

Equations (10) and (11) exhibit identical forms, under the
following constraint conditions:
1

Qg = dg,

1 1 1.2 _ 2 2 z 2
ay; +5az;x —15a k™ = a; +5agk — 15agk”,
aj + 3ajx — 6aix® — 10aix® + 15aik* =

=aZ + 3ajk — 6aix’ — 10aix® + 15aix?, r

Q—alk+ alx? + alx® — aix‘} - aéxs +alk

4

6:

2,6
=0 —ajk +aix® +aix® —aix® —alx® + alxb,

b + A*b; = biA* + b3,
a7
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From (14)—(17), one can derives the following:

, _ 6azai—5(ai—ai)a;
de = 6 1 r
ag
a} = a3 — 3(a} —ai)x—6(a — al)x® +
+10(al — aZ)x® — 15(al — a)x?,
a; =
(af —a})x —2(aj — a3)x® + 5aix® + 9(al — ai)x®
Sx* '
bl = (bf — b1)A? + b2,

(18)

We can express equation (10) in an alternative form
as follows:

T () + 8,1 €) + A, H () — AHy () +

3 —
FAHE) =0, (19)
where
(el+5ain—15aix?) 3
A= ,
Og
I_zr.t‘;+3E‘gx—ﬁﬁixz—lﬂﬂéx5+15ﬂéxﬂ
A, == < ,
Qg
¢
I_f'-‘—ﬂ ?{+r1 Pt ?{5—34?{4—& %> 4ot ?{E':I
Ay = : ,
2L
&
(pi+a®sl)
_&4 = '-—‘__
2 A
(20)

Next, we will solve Eq. (19) using the following method.

3. Extended auxiliary equation approach

This method assumes the existence of a formal solution
to Eq. (19):

H,(Q)=E, Ef @) (21)
where f{{) satisfies:
FAO =Zi k(D). (22)

Here, E, and h; are constants, with Ey#0 and h, #0,
where ¥ € . It is commonly known that Eq. (22) has
the following solutions:

Set-1: If we set hg =h; =h3 =0, then Eq. (22) has
the solutions:

(1): Bright solitons:

Fl) = i_\ll—: sech '[.,,-' Ri),  hy> 0.k <0, (23)

(11): Singular solitons:

f@) = £ |2 esch (Jhy7),

+ hy =0,k =0,
-.Jr'

(24)

i

(T

Set-2: If we set hy=h;=0 and hy =

Eg. (22) has the solutions:
(1): Dark solitons:

, then

ahg

—
fg) = iﬂl—;‘f;tanh (ﬂl—%c), hy < 0.hy = 0. (25)
(11): Singular solitons:

Set-3: If we set hy =h; =0, then Eq. (22) has the
combo-bright-singular soliton solutions:

f@) = 2

+2. ok sinh(, Ty d)+hz[cosh [ Ro1-1]

hy = 0 hy =0,

f@) =t |72 coth

(@7)

Set—4: If we set hp=h; =0 and h; =

Eq. (22) has the solutions:
(1): Dark solitons:

2,/h;hy, then

fl) = —% 2 [1 ttanh (2 /h0)], >0k, >0,
(28)

(11): Singular solitons:
F@Q)=-3 I—[1 tcoth (3h;¢)] hy > 0.hy =0,
(29)

Set-5: If we set h; = hy = 0, then Eq. (22) yields the
following Weierstrass elliptic function solutions:

ahy

5 |rl.?|" PN [26Rg he—Ra)
B \fRalat 216 /
= Ra[Z6Rg kg —FRa), 7. hy =0, 30
fig) .,='r.‘_;_[5-g:~[';'.ﬂuf';.+u ST T (30)
and
3pp( 7 2h2-ahoh s (shohsha—2hE) -y
fQ = ﬂJ' — (31)

Here, ©({.g..g:) represents the Weierstrass elliptic
: (Fg 2920 . . e
function, and (7. gy. g2 =5%, which satisfies:

p?=4p® — g @ —g, , Where g, and gs
invariants of the Weierstrass elliptic function.

are the

3.1. Soliton solutions

In Eq. (19), the balance number N =3. Consequently,
Eqg. (19) has the formal solution:

Hy ()= E + Ef(D) + E.f () + Eaf° (), (32)

where Eq, E;, E; and E; are constants to be determined
providing E; # 0.

By substituting (32) and (22) into (19), we derive
the following system of equations:
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ALEZ +20160h3E, =0,
5040h3E, + 41580h3E h, + 3A,E,E5 = 0,

360A,hIE; + 29880hih,Ey + 3A,EFE, + 26730h,E hi + 720h3E; +9720h3h,E, +
+3A,E,EZ =0,

. . 10395
35910h,hyEgh, + 3A,EyEZ + 540A, hyEsh, + 120A,h3E, + 6A,E,E,E, + Thgﬁa +

+ALEZ + 6720h3E, h, + 5670h h3E, + 22680h3E;h, + 1260h1E hy; = 0,
5040h3E,h, + 18144hih,E; + 408A,h,Esh, + 840h3E h, + 189Ah3E; + 12A,E h,

+7140h,h;E,h, + 25704h,hoEchy + 24A,h3E, + 630h,E h3 +9450h3h,E; +
+6A,E E,Ey + 3A,E,E] + 168A hyE hy, + 945h3E, + 11172h,hiE, + 3ALE{E, = 0,

2 2 9 2 1, 2 15 2 3 2
144h,E hy + 270hgh E; + Zha hiE; + 3 h3;E hy + 32hzhyE, + EY h,hiE, + Eﬂlhgﬁg
1
+ Eﬂ.: Eyhy +2A,hyE, + 8A hohoE, + ALE + 36h,Ejhghy + 15h3E hyh, +99h hyEohy

45 1
+225h;hoEshy + —~Eq h3 + 3A,E hohy + 18A,hyE hy — ALE, + S 8hoEihy =0,

21 . 315 _ . 105 | . .
?az Ejhy + 2016h,h3E, + Tﬂiha +7&1h§£'2 + 3A,E,EF + 6A,E,hy + 630h3E hy
+14805h,h Exhy + 4977h hoEshy + 735h,hyE hy + 4032h3RE, + 19656h,h by E,
. 10101

+120A,h,Eshy + 3ALEZE, + 6AE E,E, +Th3h553 + 315A,h,E;hy + 30A,hyh,E,

525 24759 3045

—Ah,Echy + ———hiE.h, +——h3E,h, = 0,

2 . 4 2 e
1512h h3E; + 45h,hiE, + 126h;hiE, + 546h3hyE; + 63h3E hy + 315h,E h]
9
+30A,hyhyE, + 60A hyh,E; + gﬂlhlﬁlha + 15A,h,E b, + 12A,hyh B, — AE,
2 2 2 45 2

+45h3E hy + Ayh3E, + AyEjhy +3A,E,hy + 6AhE; + 3ALEFE, + ?ﬁlhiﬁ'a + E h3
+132h,E hyh, + 756h,hyE,hy + 420h h,hyE, + 27h h,E;hy + 1512h h,E;hy, =0,

, , , 63 , 2835 ,
675hshiE; +675h3hoE; + 63h3E by + — hoE h3 + ——hyEghi + 135A hoEyh,

195 15 1995
+424hy hoEy +——AihihoEy + - AyhoErhg + 72A1hoEyhy + 150 hyhyEy + = — h3Es by

, 3 15
+16AR3E; + SAErhy + 40E by + — A, Exhy + 678RshyExhy + 3780hshyRoE; = 0,

] ] ] ] 369
945h3E;hy + 105h3E h, + 4455h3hoE; + 665hsh3E; + 90Ahy Exhy +——Arhy Eshy

. 15 .
+6A,EqELE; + 20A Ao,y + 65A1hohoEy + 252810 Eshy + 504h3E by +— A RIE,
4+2A,h,E, + 5A,h E, + 9A, h,Ey + 3A,EZE, + 81A,h2E, + 729E,h3 + AE2 — AL E,
4+3780h hyhyE, + 504h,h,E h, + 10548h,h,h,E, + 2520h,h,E,h,
+5823hyh,Esh, + 182h,E, h3 + 4455h,E,h? = 0.

r (33)
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Set-1: If we set hy=h; =h; =0, in Egs. (33), and
solve it by using the Maple, we will get the following
results:

Result-1:

a5k, a4
ED—EI_.EL:U_.E" —U,E!=t2‘1'h4 I___.h-:—___.
N A g2
34
and (34)

o iesial L 1102545
Ay = gggm '8 sFi7ET (35)

providing hy4y, = 0. By substituting (34) along with (23)
and (24) into (32), Egs. (1) and (2) have the solutions:

(1): Bright soliton:

L 29054
u(xt)=+—2 |-—=

+ BEED 4 A,
— (36)
sech * (ﬂl—g—;(x - ct:]) explil—rx + Q¢ + ¢, JL.
; ‘4.1_‘.1 29054,
vix, t) =+ P ﬂl_—j‘ o
—
sech ? (ﬂl—:—;{x — .::'t:]) explil—wx + Q¢ + ¢p)l.
provided A, = 0 and Ay = 0.
(1) Singular soliton:
_ o3 (2055,
u(x.t) =+ BEES 4 Ay
— (38)
csch ® (ﬂl—:—: (x— ci‘]) exp [i{—xx + Qt + ¢ )],
: _, 2448, [29054,
v(xt) =t o, -\‘II Ag
(39)
—
csch!(_\l 1{.r—ct:])exp[{ xx + QF + ¢p)l,
provided 4; = Oand &, = 0.
Result—2:
_ _ o, 288A, | 35h, _
E,=0,E =+ s LE, =0, (40)
—_—
— |__35hy — 174,
E, = i241‘| ™ he hy=—_1%,
and .
_ 1BB1AT | 174802547
4 = gees T T 10E127041" (41)

provided k 4, = 0. By substituting (40) along with (23)
and (24) into (32), Egs. (1) and (2) have the solutions:

(1): Bright solitons:

p 70554, [oE7TA,
u(x,t) =+ 4:.._1: _\J% ech (? (x — ct:])

(42)

12 — 17 sech ? ( T (e — t])]

# explil—sx + O + ¢ )1

4 244Ny (70554,

vix, t) = ech (% (x — cﬂj

—49""'1-.4

ICTrad 43

x 12—1?595&2(M{x—cﬂ]]>< (43)
x explil—rx + Qt + ¢, )]

provided A; = 0 and &, = 0.

(11): Singular solitons:

ufxt) =+ ;:_it -,II 'Dii'h csch (" 9:31_‘;1 (x — cﬂ]
12 + 17 esch ( e (x —ct) ]]
% explil —xx + ¢ r+|;,,:l]
(44)
vix, £) = _;:A_l: -JI 'Dili csch (" 9:9111 (x — cﬂ)

12 + 17 csch © (" = li{x—ct:]]]

* exp[:'{—x.r + 0O + g‘n:]],

provided &; = 0 and A, =< 0.
Set-2: If we set hy=h;=0 and h, :;T in

Egs. (33), and solving it by using the Maple we W?II get
the following result:

=
E,=0.E, = +”“1ﬂl— *% E, =0,
35h A (46)
E, = +24h, |- B8 p =2t
2 VT
and
_ 946A] |, 12604
8= Gae M T e (47

provided ks As << 0. By substituting (46) along with (25)
and (26) into (32), Egs. (1) and (2) have the solutions:

(1): Dark solitons:

o™

u(x,t) =% ;lqlg;it (; ||——(x—ct])

(48)
—
3—'(31]_}1‘(_\N|—3—1(x— CI’)):|
X expli(—rc + Qe+ o),

. _ 4304 354 L I

v(x.£) =+ —w\llﬁs_‘..;tmh(}\l 23(.1' .::'ﬂ)
(49)

7 1'__1]
% |3 — tarh® ;“J'——,{.r—.:ﬂ ®

xaxp[{ e oS f-l—l;:.:]]
provided 4A; = 0 and Ay = 0.
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(1) Singular solitons:

— o3 (354 1 A
u(xt) =+ = 1|3354C0ﬂ1(:ﬂ 33':.1' .::'t:])x
[y
3 — coth® ;ﬂ'—g{x—cﬂ explil—nx + O + ¢ 1.
(50)
" — g 3AM 354 1 _ &g, _
vix,t) =+ o -\IIES_'._;EDm(J-\I 33':.1' .:'t:])x

i

e

provided A; == 0 and As = 0.
Set-3: If we set h; =h; =0, in Egs. (33), and solving
it by using the Maple, we will get the following result:

[ a,
-\II_E{X - gﬂ) expli(—xx + 0t + )],

(51)

35hy

E:]:D,E]_:D,EJ:D;Eg =t24h_ [— .-

: Vo (52)

=2 8 -
ho = rnae ™ 3

and
L 1343A] . 33135743
8 = Seas 85 T Joormes (53)

provided ks Ay = 0. By substituting (52) along with (30)
and (31) into (32), Egs. (1) and (2) have the Weierstrass
elliptic function solutions:

(1):
ulx, ) =
o, s1oal  1n7ad 4 I
—= g:'5", T T /
+648 [~ |—— - — 54)
) /
» explil—rx + Ot +¢,)1L
vix, t) =
. siea  1117a VT
—=| P I, o 'fﬂ-:s@sza:r'45:'-39':-:1_]'
+6484 |_:_-4 — - — (55)
sano 1 4154 g |
498 Cx=ct) gt~ mmmenss |~
\ /
x explil—rx + Q¢ + ¢yl
provided A = 0.
(1n:
T
uget) = £5 |-
ERY) Ay )
24487 §7243 1 : (56)
[3@({’1— gl et 5:-:1333‘15)+ Ei"l]
x explil—rx + 0t + ¢5)L.
v(xt) = 34 |- 2o %
3 -\\I Ay
24423 g72a} T (57)
3| o — o)~ s~ Tames ) T

» explil—rr + 0t + ¢y0L
provided A == 0.

4. Conclusions

The work in this paper addressed to highly dispersive
optical solitons with differential group delay wi@gin
account of the Kerr law of self-phase modulation g
the extended auxiliary equation approach. This allows to
describe the full spectrum of optical 1-soliton solutions
within the model that are all exhibited. The cor-
responding parameter constraints are also enlisted for
these respective solitons to exist. The work is thus
promising and can be continued. In the future, this model
will be extended to dispersion-flattened fibers and those
results will be recovered and disseminated after
comparing with the pre-existing works. Additionally, the
perturbation terms will be included so that a complete
picture of the model will be painted. Moreover, highly
dispersive optical solitons would be addressed with other
optoelectronic devices apart from optical fibers. This is
just the tip of the iceberg.
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Bucoxonucnepciiini onTu4Hi coJ1iToHM 3 An(epeHIiaJbLHOI0 TPYNOBOI0 3aTPUMKOI0 1UIs 3aKkoHy Keppa dazopoi

caMoOMOYJIsilil

R.M.A. Shohib, M.E.M. Alngar, Y. Yildirim & A. Biswas

AHoTanis. Y cTaTTi pPO3TIIAJAIOTECS BHCOKOIMCIIEPCIHI ONTHYHI CONITOHH 3 IU(EepeHIIaTbHOI TPYHOBOIO
3aTPUMKOIO, 10 MaloTh 3akoH Keppa ¢asoBoi camomonymsmii. IligXix po3MIMPEHOro JOTMOMDKHOTO PIBHSHHS
BiIHOBJIIOE TIOBHUM CHEKTP COJITOHIB. TakoX MpeAcTaBIeHO PO3B’SA3aHHSA y BUTIAAI CTINTHYHUX (YHKIIH
Beepmrpacca. Yci pe3ynbTaT IpeACTaBlIeHI 3 HEOOXITHUMHU 00MEKESHHIMHE TTapaMeTpiB, sIKi IPUPOIHO BUILIUBAIOTH

13 CXEMH.

Kiro4oBi ciioBa: coiToHH, AUCTIEPCis, TIOIBIITHE TPOMEHE3aIOMIICHHSI.
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