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Abstract. In this paper, the effect of sub-millisecond range flash lamp annealing (FLA) on 

the microstructural and chemical composition of copper indium gallium selenide sulfide 

(CIGSS) films deposited at low temperature (below 350 °C) on flexible polyimide was 

studied. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD), and 

micro-Raman spectroscopy indicate that flash lamp annealing leads to a more homogeneous 

polycrystalline structure and reduces the defect concentration in the CIGSS layer. 

Additionally, energy-dispersive X-ray spectroscopic (EDS) measurements show that copper 

concentration slightly increases, with a slight decrease in the concentration of Ga and In. 
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1. Introduction 

Flexible and stretchable electronics is a highly multi-

disciplinary research area with the potential for signi-

ficant breakthroughs in developing new technologies for 

both ubiquitous and unique electronics [1], for example, 

on-skin electronics. The creation of solar cells on flexible 

substrates requires special low-temperature treatments to 

obtain qualitative photo-absorbing material. Photo-

absorbers, namely Cu(InGa)Se2 (CIGS) or Cu(InGa)SSe 

(CIGSS), are very promising for fabricating solar cells on 

flexible wafers. 

As noted in literature from 2024, the efficiency of 

these solar cells on glass substrate produced by Solar 

Frontier (Japan) and tested by AIST (Japan) reached 

23.35% [2]. The review [5] states that a flexible 

polyimide (PI) substrate has been considered the most 

promising candidate for flexible CIGS PV products. 

CIGS solar cells reached an efficiency of 20.8% on a 

flexible PI substrate [3]. These record values were 

attributed to both the low-temperature three-stage co-

evaporation process involving heavy alkali elements and 

post-deposition low-temperature treatment. Additionally, 

PIs are generally regarded as highly “biocompatible” [4].  

 

Unfortunately, the record cell efficiency [2, 3] is more a 

“laboratory record” than achievable in the industry. In the 

industry for PI substrate, the cell efficiency does not 

exceed 15% [5, 6]. Without a doubt, the methods of 

annealing the material make significant contributions to 

the efficiency of the cell. 

Regarding this, the paper presents a study of the 

post-deposition sub-millisecond range flash lamp 

annealing effect on the microstructural and chemical 

composition of CIGS films deposited on PI wafer.  

2. Experimental part 

2.1. Sample preparation 
 

The CIGSS films were deposited using RF plasma 

magnetron sputtering in an Ar ambient from a granulated 

Cu(In0.7Ga0.3)SSe target (American Elements Co, USA) 

on molybdenum-coated PI substrates. The temperature of 

the wafer during magnetron deposition was close to 

300 °C. The power of the RF discharge was close to 

250 W. 

To perform FLA treatment, we have used a 

modified two-lamp optical head from an impulse ruby 

laser. Instead of the active element, the sample holder  
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was placed between two IFP-8000 lamps, and a diffuse 

reflector was also used. The back surface of the sample 

(PI substrate) was covered with a white plate. Thus, the 

irapplied radiation energy was absorbed exclusively by 

the open surface of the CIGS absorber. By varying the 

number of capacitors in the storage block (from 100 to 

1200 μF), as well as the voltage (up to 3.5 kV), the 

optimal process parameters were selected. The sub-

millisecond annealing mode was applied. It was 

sufficient to provide annealing in the thermal 

conductivity regime [7] when annealing occurs mainly in 

subsurface regions. To prevent destroying the CIGSS 

film on glass and PI substrates, the energy fluence was 

within the range of 0.2…0.7 J/cm
2
. The phases of FLA 

treatment were performed sequentially, one by one, and 

the measurements of structural parameters were carried 

out between these phases. 

2.2. Sample characterization 
 

The morphology of Cu(In1–xGax)SSe layers on polyimide 

was studied using scanning electron microscopy (SEM, 

Tescan Lyra 3 GM FIB/SEM), while the elemental 

microanalysis of CIGSS was carried out using  

the energy-dispersive X-ray spectroscopy (EDXS, 

“OXFORD Instruments”). For the microanalysis of 

transition metal elements, K lines are usually preferred to 

L lines to avoid chemical effects (i.e. change in peak 

shape and position). 

The X-ray structural study was carried out using a 

Panalytical X’Pert Pro MRD X-ray diffractometer by 

using the following parameters: CuKαl radiation at λ = 

0.15406 nm, the voltage at the tube anode equal to 

45 kV, and the current fixed at 40 mA. The 

diffractograms were obtained using the sliding beam 

method, the X-ray incident angle was 2 degrees. 

Raman measurements were performed at room 

temperature using a Renishaw 1000 micro-Raman system 

in a backscattering configuration with a 532  nm 

excitation laser. A laser spot size close to 3  μm was 

achieved using a 100× objective. To prevent sample 

damage and thermal effects, the excitation power did not 

exceed 5 mW. 

3. Results and discussion 

3.1. Surface morphology and chemical composition 
 

After RF plasma magnetron deposition, the CIGSS films 

on the molybdenum layer have a polycrystalline structure 

with a wide distribution of crystallite sizes 

(500…2000 nm (Figs. 1a and 1e). The chemical 

composition of the studied films was slightly different 

compared to the target: the films were slightly depleted 

in Ga and Cu (see Table 1). 

After the FLA with optimal energy fluence 

(0.627 J/cm
2
) the surface of the CIGSS films becomes 

more homogenous – grain size is concentrated close to 

1300 nm (Fig. 1f) and the film thickness slightly 

decreased from 2.58 to 2.30 μm (Figs. 1b and 1d). The 

results of microanalyses confirm the same. 

Table 1 shows the quantitative EDXS analysis for 

Cu(In1–xGax)SSe layers before and after the FLA with 

optimal fluence (0.627 J/cm
2
). The relation of 

Cu/(In + Ga) after the optimal FLA increases from 82 to 

0.87 at.%, which is very close to the stoichiometric 

value, whereas the relation of Ga/(In + Ga) changes  

from 26 at.% to 25.6 at.%. The chemical composition  

of our materials after FLA can be presented as 

Cu(In0.74Ga0.26)(Se0.54Se0.46)2. 

The relation of Ga/(In + Ga) allows us to calculate 

the band gap energy (Eg) of our semiconductor material 

[8] using the following equation: 

       .eVGaInGa13.0GaInGa55.000.1
2

gE

The band gap of our photoabsorber is 1.15 eV (see 

Table 1), which is close to the optimal value (1.20 eV) 

obtained using the simulation of the efficiency of the 

solar cell in [9]. 

3.2. Structural measurements 
 

The XRD patterns of CIGSS on PI absorber before and 

after FLA-treatment are shown in Fig. 2. The positions of 

XRD peaks are very close to the position of the tetra-

gonal phase reflexes of CuGa0.3In0.7SSe (PDF № 000-59-

0290) Space Group I-42d. The lattice parameters were 

calculated using a full-profile analysis by the Rietveld 

method [10, 11] in the High Score Plus program. The 

weighted measure of the quality of fitting the 

theoretically calculated profile to the experimentally 

obtained diffractogram (Rwp parameter) [11] is no 

higher than 8.0. According to the fitting methodology, 

the Rwp parameter should be below 15.0. A change in 

the lattice parameters is indicated by shifts of reflexes 

(Fig. 2b). Thus, parameter a increases, while parameter c, 

on the contrary, decreases (Table 2). 

It is known [12–14] that the reduction of the lattice 

parameters is due to the increase in the concentrations of 

Ga and S atoms because their atomic radii are smaller 

than the atoms they replace (In, Se). This change is linear 

for both parameters a and c. After FLA treatment, the 

concentrations of Ga and In atoms decrease (see Table 1), 

which can be caused by the following: (1) formation of 

vacancy defects that lead to a decrease in the c parameter 

[15], (2) relaxation of tensile strain after FLA, which 

created an excess of Ga and In atoms in the initial state. 

The opposite situation is observed with the 

concentrations of S and Se and their sum (see Table 2). It 

increases, correspondingly, the value of parameter a also 

increases. The c/a ratio, which characterizes tetragona-

lity, decreases (see Table 2) and approaches a value equal 

to 2, which, according to [12], is ideal tetragonality. 

Additionally, we observe a decrease in the half-

width of diffraction reflexes after exposure to FLA. 

Generally, the change in the value of the half-width is 

influenced by several factors [16, 17]: the change in the 

size of the regions of coherent scattering and the change 

in the level of micro-deformations in the material, since 

the instrumental function for various measurements is the 

same. 
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Table 1. Chemical composition of the CIGSS films determined 

using the EDXS technique. 

 

 CIGSS initial 
CIGSS after FLA 

with 0.627 J/cm
2
 

Element Atomic % Atomic % 

Se 25.61 25.93 

Cu 23.63 24.19 

S 22.,07 22.15 

In 21.22 20.64 

Ga 7.47 7. 09 

Cu/(In + Ga) 82 87 

Ga/(In + Ga) 26.0 25.6 

Eg(eV) 1.152 1.142 

 
 

Additionally, we observe a decrease in the half-

width of diffraction reflexes after exposure to FLA. 

Generally, the change in the value of the half-width is 

The well-known Williamson–Hall method [18, 19] 

allows the separation of these two contributions from the 

positions and half-widths of several reflexes. 

 

 

 

In our case, the reflections of higher orders are too 

weak and blurred, which does not allow us to use this 

technique for the obtained diffractograms However, it is 

possible to estimate the size of coherent scattering 

regions using Scherer’s formula [20]: 

 coskD ,       (1) 

where D is the size of the coherent scattering regions in 

nm, λ is the wavelength, β is the half-width of the reflex, 

parameter k = 0.9, and θ is the angle. The evaluation 

shows (see Table 2) that the area of coherent scattering is 

too small compared to the crystallite sizes obtained by 

scanning electron microscopy.  

This may indicate the presence of a significant 

number of defects and their clusters, which lead to a 

substantial decrease in the coherence length in the source 

material. At the same time, an increase in the fluence of 

FLA leads to an increase in the size of the coherent 

scattering region by 22%, which indicates a decrease in 

the defectivity of the structure after FLA. 

Micro-strain, ε, was calculated from the following 

expression [21]: 

4

cos
 .       (2) 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 1. Typical SEM images of the surface (a, c) and cross-section morphology (b, d) of the Cu(InGa)SSe layers on polyimide for 
initial (a, c) and after FLA with the fluence of 0.627 J/cm2 (c, d). Statistical analysis of grain size on initial surface (e) and after FLA (f). 
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Fig. 2. XRD patterns of CIGSS on PI absorber after FLA 

treatment. Survey spectra (a), (112) CIGSS reflections (b) and 

reflections within the range of 38° to 56° (c). 

 

 

 

The estimation of the level of micro-deformations 

using formula (2) (see Table 2) shows a decrease in this 

value by 14% compared to the initial material. Thus, two 

effects in the CIGSS structure are observed during every 

step of FLA. These are: (a) an increase in the size of 

coherent scattering regions, and (b) a decrease in the 

level of micro deformations. Observed effects indicate an 

increase in the structural perfection of the CIGSS layer 

with each step of FLA. The weak reflexes (220) and 

(312) (Fig. 2c) become more intense and narrower, which 

is an additional confirmation of the growth of the 

structural ordering of CIGSS. 

With increasing FLA fluence energy, the intensity 

of molybdenum reflexes increases starting from the 

fourth treatment (0.53 J/cm
2
), which can be associated 

with the reduction of the thickness of the CIGSS film. 

Attention should also be paid to the increase in the 

concentration of copper, which, in excess, forms an 

additional crystalline phase of CuSe. The appearance of a 

peak at 49 degrees in the last two treatments may indicate 

the formation of a hexagonal CuSe phase, and this peak 

is probably the (110) reflex of this phase. 

 

3.3. Raman measurements 

 

Fig. 3 shows the Raman spectra of the initial CIGS film 

and after FLA treatment with the energy fluence of 

0.54 J/cm
2
. Two vibrational bands close to 190 and 

280…290 cm
–1

 were observed. The frequency position of 

chalcopyrite (CH) A1 mode for Cu(InGa)Se2 films is 

usually equal to 175 cm
–1

[22]. Adding sulfur in the 

crystalline lattice of the chalcopyrite, in our case, results 

in a shift of the A1 mode to 195 cm
–1

. The weaker peak at 

280…290 cm
–1

 can be assigned to the CuxSe phase or A1 

mode of Cu(InGa)S2 [22, 23]. The shoulder near  

150 cm
–1

 can be attributed to chalcopyrite Cu-poor 

ordered vacancy domains (OVC) [24]. One can see that 

the FLA leads to insignificant increase in the intensity of 

A1 mode of Cu(InGa)SSe and a slight shift of its peak 

position from 195.3 to 194.9 cm
–1

 due to an increase in 

the Cu/(Ga + In) ratio [25]. Small increase in the 

intensity can be associated with a small increase in the 

size of CH crystallites. The contribution of the CuxSe 

phase band becomes more pronounced after FLA 

treatment. 

 

Table 2. Lattice parameters and mechanical stresses in the CIGSS lattice after FLA. 

E, J/cm
2
 

2θ reflex 

(112), degree 

Half-width of 

(112), degree 
ε, % D, nm 

Parameter а, 

Å 

Parameter с, 

Å 
c/a 

Initial 27.18 0.686
 

1.19 11.92 5.5631 11.6088 2.086 

0.2706 27.16 0.682 1.19 12.11 5.5632 11.6072 2.086 

0.3465 27.18 0.675 1.18 12.16 5.5648 11.6009 2.084 

0.429 27.16 0.672 1.17 13.22 5.5714 11.5961 2.081 

0.5346 27.22 0.618 1.08 13.91 5.5743 11.5852 2.078 

0.627 27.25 0.588 1.02 14.58 5.5789 11.5504 2.070 
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Fig. 3. Raman spectra of the initial CIGS film and after FLA 

treatment with the energy fluence of 0.54 J/cm2.  

4. Conclusions 

We have studied the effect of flash lamp annealing on 

structural and chemical properties of polycrystalline 

CIGSS films deposited by the magnetron sputtering 

technique at low temperature (300 °C) on a polyimide 

flexible substrate covered by a Mo thin film. It was 

demonstrated that the FLA resulted in formation of homo-

geneous polycrystalline material with the grain size close 

to 1300 nm and an increased Cu concentration. It was 

shown that FLA leads to reduced defect concentration in 

the material and an ideal tetragonality of the CH lattice. 
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Ламповий відпал плівок Cu(In1–xGax)SSe, нанесених на поліімідну підкладку: кристалічна структура та 

хімічний склад 

І.П. Тягульський, О.Йо. Гудименко, А.В. Русавський, С.І. Тягульський, О.Ф. Ісаєва, С.В. Кондратенко, 

В.С. Лисенко, D. Flandre, А.Н. Назаров 

Анотація. У цій статті досліджено вплив відпалу спалаховою лампою (FLA) субмілісекундного діапазону на 

мікроструктуру та хімічний склад плівок  Cu(In1–xGax)SSe  (CIGSS), нанесених при низькій температурі 

(нижчій за 350 °C) на гнучкий поліімід. Результати скануючої електронної мікроскопії (SEM), дифракції 

рентгенівських променів (XRD), мікро-Раманівської спектроскопії показують, що відпал спалаховою лампою 

приводить до більш однорідної полікристалічної структури та зменшує концентрацію дефектів у шарі CIGSS. 

Крім того, енергодисперсійні рентгенівські спектроскопічні (EDS) вимірювання показують, що концентрація 

міді дещо збільшується з незначним зниженням концентрації Ga та In. 

Ключові слова: спалаховий ламповий відпал, скануюча електронна мікроскопія, рентгенівська дифракція, 

мікрораманівська спектроскопія. 
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