Semiconductor Physics, Quantum Electronics & Optoelectronics, 2025. V. 28, No 2. P. 239-247.

Sensors

Improved sensor sensitivity and light-matter interaction

through linear width grading

B. Mohapatral, D. Dashz, D. Gupta1

"Department of Electronics & Communication Engineering, Greater Noida Institute of Technology

(Engineering Institute), Uttar Pradesh, India-201310

’Department of Electrical & Electronics Engineering, Galgotias College of Engineering & Technology,

Uttar Pradesh, India-201310

*Corresponding author e-mail: dash.diptimayee@gmail.com

Abstract. This paper introduces a proposal for a linearly width graded photonic crystal
featuring a central defect layer specifically designed for sensing applications. The design
entails incorporating alternating layers of a dielectric material onto a glass substrate.
Introducing intentional porosity within each layer facilitates analyte infiltration and
enhances sensitivity. Comprehensive analysis is conducted to optimize the number of the
dielectric layers, their width, and the porosity percentage. A multilayer structure is
constructed using porous silicon material. The porosity level and structural parameters are
fine-tuned to achieve the highest attainable sensitivity. Influence of the type and width of
the defect layer and the number of dielectric layers, along with the incidence angle, on
sensor sensitivity, quality factor and detection limit are analyzed using the transfer matrix
method. The sensitivities of the graded and non-graded structures are compared. The
linearly graded geometry provides an average sensitivity of 786 nm/RIU with the average
detection limit of 7.21x107°. Furthermore, the paper assesses different sensing parameters
such as sensor resolution, detection limit, and signal-to-noise ratio, making the studied

structure advantageous for sensor application.
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1. Introduction

This article introduces an innovative bio-photonic sensor
composed of a porous material, featuring width grading
within a photonic structure. This approach is aimed at
enhancing the overall sensor performance.

The conception of graded photonic crystals [1, 2]
within photonic crystal structures is a relatively recent
one. Its primary objective is to enhance the capability of
controlling and manipulating light propagation and
photonic bandgap engineering from various perspectives
and for various configurations. Graded photonic crystals
have been deliberately engineered with spatial variations
of key parameters such as optical index, fill factor and
lattice parameters, allowing for their progressive develop-
ment [3]. The study of graded photonic crystals [4] is
fetching due to a broad range of their applications in-
cluding enhancement of omnidirectional reflectors width,
temperature sensing, and control of photonic bandwidth
through refractive index modulation. Graded index optics
has attracted significant interest of researchers as a means
to improve the sensing performance of the sensors

having Thue-Morse (TM) and double-periodic geometry
[5, 6]. TM and double-periodic structures are two types
of photonic crystal structures used in photonics and
optics to control light propagation in materials. The TM
sequence is a mathematical sequence that can be used to
design a type of one-dimensional photonic crystal
structures based on the TM recursion rule. A double-
periodic photonic crystal [5], also known as a bilayer
photonic crystal, consists of two alternating layers of
different dielectric materials.

Utilizing a gradient refractive index distribution
offers an additional design flexibility. This approach
allows achieving a significantly high refractive index
difference within the same material (i.e. silicon in the
present work), resulting in minimum interface-induced
losses. As a result, it offers the ability to scale designs
across user-defined wave-length ranges. Furthermore,
this approach effectively alters mode dispersion
characteristics, which makes it pivotal for design of beam
apertures, deflectors, highly efficient bending
waveguides, couplers, self-focusing media, artificial
optical black holes, and antireflection coatings [7].
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In this study, we enhance sensitivity [8, 9] of the
proposed sensor by employing porosity to the layers of
the structure and a width grading of the layers.
Utilization of porous materials [10, 11] facilitates
infiltration of analytes. We compare the sensitivity of a
one-dimensional multilayer structure without grading
with the sensitivity of a structure with width grading. The
novelty of the proposed design is its simple fabrication
and, hence, lower overall sensor cost.

The reflection spectrum of a structure having the
multilayer linearly graded geometry and its band gap are
analyzed using the transfer matrix method (TMM). The
finite element method (FEM) [12, 13] is employed to
confirm the performance of the linearly-graded geometry
by examining mode localization and electric-field
distribution profile within the cavity.

The proposed structure with width grading
demonstrates a 274% higher sensitivity compared to that
of the non-graded structure.

The rest of the paper is organized as follows. In
Section 2, theoretical modelling of the geometry is
presented. Section 3 outlines the results and discussion.
The summary of the work is presented in Section 4.

2. Theoretical modelling of geometry

Here, we investigate a one-dimensional graded width
photonic crystal structure for potential sensor applica-
tions. At the resonant wavelength A,, Eq. (1) determines
the width of each layer (d;) in the reflection spectrum,
where n; represents the refractive index of the ™ layer:

nd; =2 (1)

The graded layer is assumed to be porous to
facilitate analyte infiltration. The porosity (P) of each
specific layer can be calculated as follows [14]:

2 2 2 2
("f — Nim )(”an - Z"dm)
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Here, ny is the refractive index of the porous layer,
ngy 18 the refractive index of the dense layer and n,, is
the refractive index of air/analytes, respectively. Changes
in porosity have an impact on the effective refractive
index of the layers influencing both the transmission
and reflection spectrum of the proposed sensor.
The non-graded geometry is represented as
“Glass/(A/B)’/D/(A/B)*/Air” with a defect layer ‘D’
inserted in between as illustrated in Fig. 1a. The structure
is symmetrical and composed of alternating layers of Si
(silicon) and PSi (porous silicon). The layer A is a Si (0%
porosity) layer and the layer B is a PSi (80% porosity)
one as shown in Table 1. In this structure, ‘A’ is
characterized by the refractive index n, = 3.45 and ‘B’
has the refractive index n; = 1.6. The width of the layer
‘A’ is 112 nm whereas the width of ‘B’ is 258 nm. These
widths are denoted as d), and d), respectively. The layer
denoted as ‘D’ serves as the cavity layer. Its refractive
index is n, and its width is denoted as d.

Table 1. Effective refractive indices of Si layers with different
porosities.

Porosity in percentage Refractive index of Si
0 3.45
10 3.2248
20 3.0029
30 2.7826
40 2.5619
50 2.3386
60 2.1097
70 1.8712
80 1.6166
90 1.3346

Fig. 1b shows a structure with a double-graded
width configuration. Here, the width of the ‘A’ layer
linearly increases and the width of ‘B’ linearly decreases.
Specifically, a linear graded index parameter +A (2 nm)
and +2A (4 nm) was applied to the high-index layer (as
shown for the layer ‘Al1’), whereas a linear graded index
parameter —A1 (—10 nm) and —2A1 (=20 nm) was applied
to the low-index layer (as shown for the layer ‘B17).

The layers on both sides of the defect layer exhibit
mirror symmetry in both the material compositions and
layer widths. The refractive index of Si varying with
wavelength (},) is represented by Eq. (3):

7»2
0.093822 — 0.00866

ng; =1+ 3)

Use of TMM [15] is particularly well-suited for
analyzing reflectivity spectra of both multilayer cavity-
based structures with linear width grading and those
without grading. A transfer matrix corresponding to the
™ layer is defined as follows:

n L Y Ng | ny| N | Ny
Light
B |A B D | AL | BL A B

d|dy [d [ d |d|d | d]| d

(b)

Reflected
Light

nof | | ng| ong| o m | ong| oy

. B |AL|BL| D|AL|BL| A |B
Incident

light
dy |dyta|d-a1| d [d.+a|d-a1| dy | d

Fig. 1. Geometry without (a) and with (a) width grading.
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Table 2. Sensitivities of the structures with the graded and non-graded geometry at 0-degree incidence angle.

Refractive Sensitivity of the structure with the non-graded Sensitivity of the structure with the linearly
index of geometry (nm/RIU) graded geometry (nm/RIU)
analyte D=d, D=2d, D =3d, D=d, D =2d, D=3d,
1.1 50 150 300 210 350 480
1.2 50 165 320 190 375 500
1.3 533 170 3333 196 383.3 493
1.4 57.5 180 340 202.5 397.5 487
1.5 60 188 340 214 398 492

Table 3. Sensitivities of the structures with the graded and non-graded geometry at 20-degree incidence angle.

Refractive Sensitivity of the structure with the non-graded Sensitivity of the structure with the linearly
index of geometry (nm/RIU) graded geometry (nm/RIU)
analyte D=d, D =2d, D =3d, D =d, D =2d, D =3d,
1.1 50 170 340 160 370 570
1.2 60 175 350 190 370 545
1.3 56.6 186 3333 190 390 576
14 62.5 197.5 370 197 397 575
1.5 66 208 382 206 404 568
—jsina; 3. Results and discussion
M. = COS(lj —_— (4)
A pj ’ The reflectivity spectrum of the proposed sensor was
TJpjsma; cosa; obtained by simulations using a COMSOL 6.1 software.
The sensor performances of the proposed structure with
where o, = 20T and p; =n;coscosd; for and without linear width grading were compared.

An;d;coscost;
transverse electric (TE) mode, n;, d; and 0; are the
refractive index, width and propagation angle for the ;™
layer, and the resonating wavelength is A,. The resonating
wavelength under consideration is 1550 nm. In the
context of the suggested multilayer arrangement, the
ultimate characteristic matrix is derived by sequentially

Analysis of the geometry functionality involves
infiltration of analytes with varying refractive indices
into the defect layer. We considered analytes with the
refractive indices ranging from 1 to 1.5 with an
increment of 0.1. Such analytes are widely applied in
biosensors. The resonating wavelength changes when the
defect layer is exposed to a substance having the

multiplying the matrices corresponding to each refractive index greater or equal to 1. This change is
individual layer as follows: quantified as the sensor sensitivity.

The sensor sensitivity [16, 17] is calculated by

N .

My M Eq. (3):

M:HMJ{ N 12] ®) Ah,
- - My My S=—" (8)

J=1 An

Here, N represents the count of periods. The reflection
coefficient of the suggested multilayer photonic crystal
structure is expressed by Eq. (6):

r(w)= (M + M5 po)po—(Ma1 + Moy py)
(Myy+Myp0)— (Mo +Myapg)

(6)

The reflectance of the considered structure can be
expressed through the reflection coefficient as follows:

R=|r(o). (7

where A, is the difference of the resonating wavelength
at normal refractive index and that at different from
normal refractive index and An is the difference between
the mentioned refractive indices, respectively.

Figs 2a and 2b depict the reflection spectra of the
studied structures with two different geometries: the one
without grading and the other with linear width grading.
The spectra were measured at the width of the cavity
layer d), and zero incidence angle as shown in Table 2.
The average sensitivity of the non-graded structure is
54 nm/RIU, whereas the structure with the linearly
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Fig. 2. Reflection spectra of the structures without grading and with linear graded (width grading) geometry with different layer

widths, namely d, 2d), and 3d,, at zero incidence angle.

graded geometry has an average sensitivity of
202 nm/RIU. That is, the linearly graded geometry
provides the sensitivity that is 274% higher as compared
to that provided by the non-graded geometry. Similarly,
in Figs 2c and 2d, one can see the reflection spectra
corresponding to two different geometries, namely the
one without grading and the other one with linear width
grading. These spectra were measured at a zero-incidence
angle and the defect layer width 2d), as shown in Table 2.
The structures with the non-graded and graded
geometries evidence an average sensitivity of 170 and
380 nm/RIU, respectively. It is worth highlighting that
the linearly graded geometry provides the sensitivity that
is 123% greater as compared to that of the structure with
the non-graded geometry.

Fig. 3 shows the reflectivity spectra of the
investigated structures with both non-graded and graded

geometries. As indicated in Table 3, the non-graded
geometry provides an average sensitivity of 59 nm/RIU,
while this value for the case of the graded geometry is
188 nm/RIU being measured at an incidence angle of
20 degrees. The defect layer width is d), at this. However,
when the defect layer width is doubled to 2d,, the graded
geometry provides an average sensitivity of 386 nm/RIU,
surpassing the sensitivity of the structure with the non-
graded geometry, which amounts to 187 nm/RIU.

Fig. 4 presents the reflectivity spectra for both the
non-graded and graded geometries. According to the data
of Table 4, the non-graded geometry provides an average
sensitivity of 66 nm/RIU, whereas the graded geometry
provides an average sensitivity of 252 nm/RIU at a 40-
degree incidence angle and the defect layer width d,.
When the defect layer width is doubled to 24, the graded
geometry demonstrates a substantially higher average
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Fig. 3. Reflection spectra of the structures without grading and with linear graded (width grading) geometry with different layer

widths, namely d,, 2d,, and 3d,, at an incidence angle of 20 degrees.

sensitivity of 505 nm/RIU, surpassing the sensitivity
for the non-graded geometry case, which remains at
209 nm/RIU. Fig. 5 shows a comparison of the average
sensitivities for the graded and non-graded geometries at
different incidence angles. Three scenarios are
considered: (a) the defect layer width is d}, (b) the defect
layer width is 2d), and (c) the defect layer width is 3d},.
Fig. 5d shows a comparison of the electric field
intensities for the linearly graded geometry case at
various incidence angles at the cavity layer width 3d,,.

As can be seen from this figure, the electric field
intensity values are 5.18 x 105, 6.61 x 105, and
1.0 x 10° V/m for the 0-, 20- and 40-degree incidence
angles, respectively.

In addition to sensitivity, other sensor performance
parameters have been calculated as shown in Table 5.
The minimum refractive index (RI) change that can be
detected by the sensor is the detection limit (DL)
calculated by dividing the sensor resolution to its
sensitivity, DL = SR/S [18].

Mohapatra B., Dash D., Gupta D. Improved sensor sensitivity and light-matter interaction ...

243



SPQEO, 2025. V. 28, No 2. P. 239-247.

Fig. 4. Reflection spectra of the structures without grading and with linear graded (width grading) geometry with different layer
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Table 4. Sensitivities of the structures with the graded and non-graded geometry at 40-degree incidence angle.

Refractive Sensitivity of the structure with the non-graded Sensitivity of the structure with the linearly
index of geometry (nm/RIU) graded geometry (nm/RIU)
analyte D =d, D=2d, D =3d, D =d, D=2d, D =3d,
1.1 60 170 320 240 450 710
1.2 60 190 365 240 485 765
1.3 66.6 216 413.3 250 516 803
1.4 70 227.5 447.5 262 532 827
1.5 76 246 472 270 546 826

The sensor resolution (SR) [19] refers to the
detected,
SR = FWHM/((1.5) x (SNR)"®), where FWHM is the
full width at half maximum and SNR is the signal-to-

minimum

spectral

shift that can be

noise ratio, respectively. The quality factor (QF) [20] is
defined as QF =A,/FWHM, where A, is the resonant
wavelength. The figure of merit (FOM) is calculated as
FOM = S/FWHM [21].
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the cavity layer width 3d,

Table 5. The proposed linear width grading sensor sensitivity, signal-to-noise ratio, detection limit, and sensor resolution for
different infiltered analytes, at an incidence angle of 40-degree and the defect layer width 3d,,.

Refractive index of S (nm/RIU) SNR Detection limit Sensor resolution
analyte
1.1 710 78 0.00627851 4.457742
1.2 765 155 0.00691851 5.292662
1.3 803 240 0.00735239 5.903969
1.4 827 296 0.00752331 6.221773
1.5 826 378 0.00800726 6.614

It may be concluded therefore that by altering the
incidence angle and increasing the cavity width, the
sensitivity of the structure can be enhanced, ultimately
boosting its overall performance. The proposed bio-
photonic sensor, employing a graded index, exhibits a
higher sensitivity as compared to that of the sensors with
a conventional step index profile. Incorporating a graded
refractive index profile has an additional benefit of
reducing the interface-related losses within the stacked
photonic crystal structure. Furthermore, introduction of
the width graded index enables controlling the mode
confinement characteristics of the structure, resulting in a
pronounced increase in electric field confinement

(>1x10° V/m) within the defect region. This enhanced
confinement increases the interaction between light and
matter, thereby raising the sensitivity.

In conclusion, Table5 enables making a
comparative analysis between the obtained outcomes and
previous endeavors by the optics research community.
The sensitivity of the envisioned structure can be readily
adjusted by manipulating the incidence angle without a
need to fulfil phase-matching conditions akin those
encountered in structures based on surface plasmon
resonance. The fabrication process of the structures with
the suggested design will be simplified by employing
presently available thin film deposition methods.
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4. Summary

The current study explores a width graded photonic
crystal cavity geometry denoted as
Substrate/(AB)*/D/(AB)*/Air for potential photonic
sensing applications. The graded width geometry
provides a 274% greater sensitivity as compared to that
of the structures with the non-graded photonic crystal
geometry. Further enhancements in sensitivity can be
achieved by adjusting specific sensor parameters such as
the incidence angle and cavity layer width. Furthermore,
by triplicating the width of the defect layer in the
suggested graded width design, the average sensitivity
can be increased to 786 nm/RIU at an incidence angle of
40 degrees. The achieved sensitivity is high enough to
enable detecting extremely low concentrations of
analytes. Moreover, the simplicity and cost-effectiveness
of the fabrication process make the proposed structure a
promising choice for various sensing applications,
including gas sensing, liquid sensing, and detection of
various biological components.
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IMokpameHHsi YyTJUMBOCTI AaTYMKA Ta B3aeMOAii CBiTJa 3 peyoBMHOIO 3aBASIKM JiHillHOMY IpaayloBaHHIO
IIUPHHA

B. Mohapatra, D. Dash, D. Gupta

AHoTanig. Y miif cTarTi 3amponoHOBaHO ()OTOHHUI KpHCTal 3 JHIMHAM TPAAyIOBaHHAM TOBIIWHH, SKHH Mae
PO3TAIIOBaHUH 1O LEHTPY Ie(QEeKTHUH mIap, CIelialbHO PO3poOIeHNH I 3aCTOCYBaHHS y naTynkax. KoHcTpykiis
BKJTIOYA€ YepryBaHHS IMIApPiB JieNEKTPUIHOTO MaTepiary Ha CKIAHIN minknaami. LlinecnpsiMoBane CTBOpEHHS MOPUCTOT
CTPYKTYPH B KOXXKHOMY IIapi ITOJIETIIye MPOHWKHEHHS aHAJITY Ta IJBHILYE YYTIUBICTh. [IpoBeeHO KOMIUIEKCHUI
aHaJli3 3 METOI0 ONTHUMI3AIlil KUTBKOCTI mapiB AieJIeKTPUKa, IXHHOI TOBIIMHM Ta opucTocTi. bararomaposa cTpykTypa
noOysoBaHa 3 BUKOPHCTaHHSAM IMOPHUCTOTO KPEeMHif0. PiBeHb MOPUCTOCTI Ta CTPYKTYpHI mapameTpu migiOpaHi Tak,
00 JOCATTH HAaWBHUINOI MOXKJIMBOI YyTIUBOCTL. BIIMB THIy Ta TOBIIMHM NEQEKTHOTO IIApy, a TaKOXK KITBKOCTI
mIapiB JlieJIeKTprUKa Ta KyTa MajiHHS Ha YyTIMBICTb JIaTYMKa, JOOPOTHICTH Ta IOPIr BUSBJIEHHS OYIJIO IPOAHATi30BaHO
3 BUKOPHCTAaHHSAM METOAY MaTpHLb Iepexoy. [1opiBHAHO 4yTIMBOCTI I'pagydOBaHUX Ta HErpamyllOBaHHX CTPYKTYD.
CepeznHs YyTIMBICTD JaTYMKIB, 10 MAIOTh I'€OMETPIIO0 3 JIHIHHNM TrpaayloBaHHsAM, cTaHOBUTH 786 HM/RIU, a cepenne
3HAYEHHSI [OPOTY BHSBICHHS — 7,21x107. V cTaTTi TakoXk OLiHEHO pi3Hi MapaMeTpH AeTeKTyBaHHS, TAKi K PO3LIbHA
3JIATHICTh JaT4YMKa, MOPIr BHSBJICHHS Ta CIIBBIIHOLIEHHS CUTHAI/IIYM, sIKI HaJalOTh IIepeBar Ui 3acTOCYBaHb Y
JaTYUKAX.

KaiouoBi ciioBa: niHiliHa rpaganis myupuHU, GOTOHHUN KPUCTAJI, JATYUKHU, YYTIHUBICTb.

Mohapatra B., Dash D., Gupta D. Improved sensor sensitivity and light-matter interaction ...
247


https://doi.org/10.1007/s12596-024-01665-9

