Semiconductor Physics, Quantum Electronics and Optoelectronics, 2 (2) P. 028-035 (1999).


References

1. C.Nylander, B.Liedberg, T.Lind, Gas detection by means of surface plasmon resonance // Sensors and Actuators 3, pp.79-88 (1982/83).
https://doi.org/10.1016/0250-6874(82)80008-5
2. B.Liedberg, C.Nylander, I.Lundstrom, Surface plasmon resonance for gas detection and biosensing // Sensors and Actuators 4, pp.299-304 (1983).
https://doi.org/10.1016/0250-6874(83)85036-7
3. M.T.Flanagan, R.H.Pantell, Surface plasmon resonance and immunosensors // Electr.Lett. 20, pp.968-972 (1984).
https://doi.org/10.1049/el:19840660
4. K.A.Peterlinz, R.Georgiadis, In situ kinetics of self-assembly by surface plasmon resonance spectroscopy // Langmuir. 12, pp.4731-4740 (1996).
https://doi.org/10.1021/la9508452
5. E.F.Aust, S.Ito, M.Savodny and W.Knoll, Investigation of polymer thin films using surface plasmon modes and optical waveguide modes // Trends in Polymer Science 2(9), pp.313-323 (1994).
6. B.S.F.Altenburg, H.E.deBruijn, R.P.H.Kooyman, and J.Greve, Determination of thickness and dielectric constant of the transparent dielectric layers // Optical communications 82, pp.425-432 (1991).
https://doi.org/10.1016/0030-4018(91)90353-F
7. R.M.A.Azzam, N.M.Bashara, Ellipsometry and polarized light. North-Holland Publishing company, Amsterdam (1977).
8. H.Raether, Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics, Springer-Verlag, Berlin- Heidelberg (1988).
https://doi.org/10.1007/BFb0048317
9. K.Welford, The method of attenuated total reflection, in: Surface plasmon polaritons, IOP Short Meetings series, N9, IOP Publishing Ltd. pp.25-78 (1988).
10. F.Forstmann and H.Stenschke, Electrodynamics at metal boundaries with inclusion of plasma waves // Phys. Rev. Lett. 38(23), pp.1365- 1368 (1977).
https://doi.org/10.1103/PhysRevLett.38.1365
11. Y.Borensztein, Investigation of nonlocal electromagnetic phenomena in thin silver films near the plasma frequency // J.Opt.Soc.Am. 73(1) pp.80-86 (1983).
https://doi.org/10.1364/JOSA.73.000080
12. R.A.Innes, J.R.Sambles, Optical characterization of gold using surface plasmon-polaritons // J.Phys.F: Met. Phys. 17, pp.277-287 (1987).
https://doi.org/10.1088/0305-4608/17/1/031
13. Marie-Luce Theye. Investigation of the optical properties of Au by means of thin semitransparent films // Phys. Rev. B. 2(8) pp.3060- 3078 (1970).
https://doi.org/10.1103/PhysRevB.2.3060
14. Wilford N. Hansen, Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium // J.Opt. Soc. Am. 58(3) pp.380-390 (1968).
https://doi.org/10.1364/JOSA.58.000380
15. W.H. Piller, Lead-Tin-Telluride, Handbook of Optical Constants of Solids, Academic Press, New York, E.D. Palik, Ed. 2. (1991).
16. F.Abeles, Recherches sur la propagation des ondes electromagnetiques sinusoedales dans les milieux stratifies. - Application aux couches mines // Ann. Physique 5, pp.596-706 (1950).
https://doi.org/10.1051/anphys/195012050706
17. J.A.Nelder, R.Mead, A simplex method for function minimization // The Comp. Journal 7, pp.308-313 (1965).
https://doi.org/10.1093/comjnl/7.4.308
18. G.V.Beketov, Yu.M.Shirshov, O.V.Shynkarenko, V.I.Chegel, Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters // Sensors and Actuators B. 48, pp.432-438 (1998).
https://doi.org/10.1016/S0925-4005(98)00081-1
19. E.Burstein, W.P.Chen, Y.J.Chen, A.Harstein. Surface polaritons - propagating electromagnetic modes at interfaces// J. Vac. Sci. Technol. 11(6) pp.1004-1019 (1974).
https://doi.org/10.1116/1.1318673
20. A.Hoffman, Z.Lenkefi, Z.Scentirmay, Effect of roughness on surface plasmon scattering in gold films // J.Phys.:Condens.Matter. 10, pp.5503-5513 (1998).
https://doi.org/10.1088/0953-8984/10/24/025
21. D.L.Mills, Attenuation of surface polaritons by surface roughness // Phys. Rev .B 12(10), pp.4036 - 4046 (1975).
https://doi.org/10.1103/PhysRevB.12.4036
22. A.R.Melnyk, M.J.Harrison, Theory of optical excitatiom of plasmons in metals // Phys.Rev.B. 2(4), pp.835-850 (1970).
https://doi.org/10.1103/PhysRevB.2.835
23. A.R.Melnyk, M.J.Harrison, Optical excitatiom of plasmons in metals:microscopic theory // Phys.Rev.B. 2(4), pp 851-857 (1970).
https://doi.org/10.1103/PhysRevB.2.851
24. Y.Borensztein, investigation of nonlocal electromagnetic phenimena in thin silver films near plasma frequency // J.Opt.Soc.Am. 73(1), pp.80-86 (1983).
https://doi.org/10.1364/JOSA.73.000080
25. F.Frostmann, H.Stenschke, Electrodynamics at metal boundaries with inclusion of plasma waves // Phys.Rev.Lett. 38(32), pp.1365-1368 (1977).
https://doi.org/10.1103/PhysRevLett.38.1365
26. S.Lofas, B.Johnsson, A novel hydrohel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands // J.Chem.Soc.Chem.Commun. 21, pp.1526- 528 (1990).
https://doi.org/10.1039/C39900001526
27. M.C.Millot, F.Martin, D.Bousquet, B.Sebille, Y.Levy. A reactive macromolecular matrix for protein immobilization on a gold surface. Application in surface plasmon resonance // Sensors and Actuators B. 29, pp.268-273 (1995).
https://doi.org/10.1016/0925-4005(95)01693-7
28. M.Malmstein, Ellipsometry studies of protein layers adsorbed at hydrophilic surfaces // J.Colloid and Interface Science 166, pp.333- 342 (1994).
https://doi.org/10.1006/jcis.1994.1303