Semiconductor Physics, Quantum Electronics and Optoelectronics, 3 (3) P. 316-321 (2000).
References
1. J.A. Reisland. The Physics of Phonons. John Wiley & sons LTD, London, New York, Sidney, Toronto, 1973.
2. P. BrĂ¼esch. Phonons: Theory and Experiments.I., Springer Series in Solid State Sciences, ed. by M. Cardona, P. Fulde and H.-J. Queisser, Springer-Verlag, Berlin, Heidelberg, New York, 1981.
3. P. Unsworth, J.E.Evans, P. Weightman, at al., Temperature dependence of the phonon broadening of the Si 2p XPS line // Phys. Rev. B. 54(1), pp. 286-290 (1996). https://doi.org/10.1103/PhysRevB.54.286
4. W.C. Walker and D.M. Roesslev, Phonon Induced Splitting of Exciton Lines in MgO and BeO // Phys. Rev. Lett. 20(16),pp. 847-848 (1968). https://doi.org/10.1103/PhysRevLett.20.847
5. V.M. Axt, K. Victor, and A. Stahl, Influence of phonon bath on the hierarchy of electronic densities in a optically excited semiconductor // Phys. Rev B. 53(9), pp. 7244-7258(1996). https://doi.org/10.1103/PhysRevB.53.7244
6. R. Fehrenbacher, Coupling of optical phonons in One-Dimensional t-J Model: Effects on the supercondacting fluctuation and phase separation // Phys. Rev. Lett. 77, pp. 2288-2291 (1996). https://doi.org/10.1103/PhysRevLett.77.2288
7. Z. Chen, P. Liu, W. Lu, at al., Magnetospectroscopy of Bound Phonons in High Purity GaAs // Phys. Rev. Lett. 79, pp. 1078-1081 (1997). https://doi.org/10.1103/PhysRevLett.79.1078
8. T. Hotta, and Y. Takada, Effect of electron correlation on phonons in a strongly coupled electron-phonon system // Phys.Rev. B.56(), pp. 13916-13926 (1997). https://doi.org/10.1103/PhysRevB.56.13916
9. Y.A. Toyozawa, A proposed model for the explanation of the Urbach Rule // Progr. Theor. Phys.22(3), pp. 455-457 (1959). https://doi.org/10.1143/PTP.22.455
10. V.M. Agranovich. Theory of excitons, Nauka, Moscow (1968), 384 p. (in Russian).
11. N.I. Grigorchuk. Polarization and mass operators for Green function of phonons and excitons // Diploma thesis. Chernivtsi,1973, 32 p. (in Ukrainian).
12. E.I. Rashba. Nonlinear polarization interaction of electrons with shortwave phonons // Pis'ma v ZETP. 20 (1), pp. 63-67(1974) (in Russian).
13. N.V. Tkach. Roll the linear and quadratic interaction of excitons with acoustical phonons by formation of an exciton absorption band // Ukr. fiz. zh. 25(12), pp. 1785-1789 (1979)(in Ukranian).
14. B.M. Nitsovich, G.M. Pestrjakov, I.V. Blonskii. Temperature shift of exciton absorption bands // Fizika tverdogo tela, 23(11), pp.3252-3255 (1981) (in Russian).
15. L.M. Satarov. Phonon Green function of a confined crystal // Fizika tverdogo tela, 15(10), pp. 2996-3003 (1973) (in Russian).
16. N.N. Bogoljubov, S.V. Tjablikov. Retarded and advanced Green functions in statistical physics // Dokl. AN SSSR 126(1), pp. 53-69 (1959) (in Russian).
17. A.A. Abrikosov, L.P. Gor'kov, and I.Ye. Dzaloshinsky. Quantum Field Theoretical Methods in Statistical Physics.Pergamon, N.Y., 1965, 444 p.
18. A.F. Lubchenko, V.M. Nitsovich, and N.V. Tkach. Dispersion of the dielectric per-meability tensor of the ionic crystals in the exciton region // Teor. mat. fiz, 21(3), pp. 415-423(1974) (in Russian). https://doi.org/10.1007/BF01038103
20. V.L. Bonch-Brujevich, S.V. Tjablikov. Green function method in statistical mechanics. Fizmatgiz, M., 1961, 312 p. (in Russian).
21. G. Jackeli and N.M. Plakida. Charge dynamic and optical conductivity of the t-J model // Phys.Rev.B 60(8), pp.5266-5275 (1999). https://doi.org/10.1103/PhysRevB.60.5266