Semiconductor Physics, Quantum Electronics and Optoelectronics, 4 (3) P. 182-186 (2001).


References

1. F. Ferrazza, Growth and Post Growth Processes of Multicrystalline Silicon for Photovoltaic Use // Solid State Phenomena, 51-52, pp. 449-460 (1996).
https://doi.org/10.4028/www.scientific.net/SSP.51-52.449
2. W. Warta, J. Sutter, B.F. Wagner, et al., Impact of Diffusion Length on the Performance of mc-Silicon Solar Cells // Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion.6-10 July 1998, Vienna, Austria, pp. 1650-1653.
3. H.J. Moller, Multicrystalline Silicon for Solar Cells // Solid State Phenomena, 47-48, pp. 127-142 (1996).
https://doi.org/10.4028/www.scientific.net/SSP.47-48.127
4. A.M. Goodman, A Method for the Measurements of Short Minority Carrier Diffusion Lengths in Semiconductors // J.Appl. Phys., 32(10), pp. 2550-2552 (1961).
https://doi.org/10.1063/1.1728351
5. Standard Test Methods for Minority Carrier Diffusion Length in Extrinsic Semiconductors by Measurements of Steady-State Surface Photovoltage. ASTM Designation: F391-96, published: April 1996 // Annual Book of ASTM Standards,v.10.05 (Electronics II), pp. 150-158.
6. N.L. Dmitruk, Yu.V. Kryuchenko, V.G. Litovchenko et al., Diffusion Length Determination by the Surface Photovoltage Method // Phys. Status Solidi (a),124(1), pp. 183-190 (1991)
https://doi.org/10.1002/pssa.2211240117
7. A.N. Zeidel. Errors of measurings of physical quantities, Science, Leningrad, 1974.
8. I.P. Lisovskii, V.G. Litovchenko, V.B. Lozinskii, et al., Properties of the Oxygen-Containing Silicon Single Crystals, Subjected to the Long-Time Thermal Treatments // Ukr. Fiz.Zhurn., 39(1), pp. 68-73 (1994).
9. M. Shchigolev, Mathematical handling of observations, Science, Moscow, 1969.