Semiconductor Physics, Quantum Electronics and Optoelectronics, 4 (3) P. 187-191 (2001).
References
1. Y. Muranaka, H. Yamashita and H. Miyadera, Characterization of diamond films synthesized in the microwave plasmas of CO/H2 and CO/O2/H2 systems at low temperatures (403 -1023 K) // J. Appl. Phys. 69 (12), pp.8145-8148 (1991). https://doi.org/10.1063/1.347468
2. K.A. Snail and C.M. Marks, In situ diamond growth rate measurement using emission interferometry // Appl. Phys.Lett. 60(25), p.p. 3135-3137 (1992). https://doi.org/10.1063/1.106747
3. E.J. Corat and D.G. Goodwin, Temperature dependence of species concentration near the substrate during diamond chemical vapor deposition // J. Appl. Phys. 74(3), pp. 2021-2026 (1993). https://doi.org/10.1063/1.354765
4. M.H. Loh, A study of diamond synthesis in an expanding arcjet plasma flow. High Temperature Gasodynamics Lab., Mechanical Eng. Dept, Stanford University. Report No TSD-106 (1997).
5. C. Kittel, Introduction to solid state physics, John Wiley and Sons Inc, N.Y. (1978).
6. M. Frenklach and K.E. Spear, Growth mechanism of vapor deposited diamond // J. Mat. Res.3(1), pp. 133-137 (1988). https://doi.org/10.1557/JMR.1988.0133
7. M. Frenklach, The role of hydrogen in vapor deposition of diamond // J. Appl. Phys.65(12), pp. 5142-5147 (1989). https://doi.org/10.1063/1.343193