Semiconductor Physics, Quantum Electronics and Optoelectronics, 7 (3) P. 318-325 (2004).


References

1. G. Kalyuzhny, M. Schneeweiss, A. Shanzer, A. Vaskevich, I. Rubinstein // Am. Chem. Soc., 123, pp. 3177-3178 (2001).
https://doi.org/10.1021/ja005703v
2. M. Stelzle, G. Weissmuller, E. Sackmann // J. Phys. Chem. 97, pp. 2974-2981 (1993).
https://doi.org/10.1021/j100114a025
3. L.A. Lyon, D.J. Pena, M.J. Natan, // J. Phys. Chem. 103, pp. 5826-5831 (1999).
https://doi.org/10.1021/jp984739v
4. B. Dubertret, M. Calame, A. Libchaber // Nature Biotechnology, 19, pp. 365-370 (2001).
https://doi.org/10.1038/86762
5. V.I Emelyanov, N.I. Koroteev // Uspehi fizycheskikh nauk, 135(2), pp. 125-139 (1981).
https://doi.org/10.3367/UFNr.0135.198110h.0345
6. K. Kneipp, A. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K.E. Shafer-Peltier, J.T. Motz, R.R. Dasari, M.S. Feld // Appl. Spectrosc., 56, pp. 150-154. (2002).
https://doi.org/10.1366/0003702021954557
7. Osawa M. Handbook of Vibrational Spectroscopy; Wiley: Chichester. (2002), pp. 785-799.
8. V. A. Kosobukin // Surface. Phys., Chem., Mech., 12, pp. 5- 20 (1983) (in Russian).
9. M. Purcell, H. Neault, H. Malonga, H. Arakawa, R. Carpentier, H.A Tajmir-Riahi // Biochim. Biophys. Acta., 1548, pp. 129-138 (2001).
https://doi.org/10.1016/S0167-4838(01)00229-1
10. G.I. Dovbeshko, V.I. Chegel, N.Y.Gridina, O.P. Repnytska, Y.M. Shirshov, V.P. Tryndiak, I.M.Todor, // Semiconductor Physics, Quantum Electronics and Optoelectronics., 4, pp. 202- 206 (2001).
11. G.I. Dovbeshko, V.I. Chegel, N.Y. Gridina, O.P. Repnytska, Y.M. Shirshov, V.P. Tryndiak, I.M. Todor, G.I. Solyanik, Biospectroscopy, 67, pp. 470-486 (2002).
https://doi.org/10.1002/bip.10165
12. C. Kuhne, G. Steiner, W.B. Fischer, R. Salzer // Fresenius J. Anal. Chem., 360, pp. 750-754 (1998).
https://doi.org/10.1007/s002160050799
13. J.A. Taboury, J. Liquier, E. Taillandier // Can.J.Chem. 63, pp. 1909-1904 (1985).
https://doi.org/10.1139/v85-315
14. E. Taillandier, J. Liquier, and J.A. Taboury, Advances in Infrared and Raman Spectroscopy, pp. 65-114 (1985).
15. H.A. Tajmir-Riahi, J.F. Neault, and M. Naoui // FEBS Letters, 370, pp. 105-108 (1995).
https://doi.org/10.1016/0014-5793(95)00802-G
16. R. Schrader, Infrared and Raman Spectroscopy. Weinheim, New-York, Basel, Cambridge, Tokyo (1995).
https://doi.org/10.1002/9783527615438
17. F.S. Parker, Biochemical application of Raman and resonance Raman spectroscopies. Academic Press: New York, London (1983).
18. G.S. Litvinov // Biopolimers and cells, 7, pp. 32-47 (1991).
https://doi.org/10.7124/bc.0002FD
19. M. Shie, Proc. Japanese-United States Congress of Pharmaceutical Sciences. Honolulu (Hawaii). Presented in Pushchino, Moscow, Institute of Biophysics, AN USSR (1977).
20. O.P. Repnytska, G.I Dovbeshko, V.P. Tryndiak, I.M. Todor, D.V. Kosenkov // Faraday Discuss, 126, pp. 61-76 (2003).
https://doi.org/10.1039/b304904c
21. W. Saenger, Principles of nucleic acid structure. Mir: Moscow (1989).
22. A.K. Boal, and V.M. Rotello // Langmiu, 16, pp. 9527-9532 (2000).
https://doi.org/10.1021/la0012384
23. Yu.P. Blagoi, C.V. Kornilova, V.C. Leont’ev // Biophysics, 39, pp. 637-644 (1994)
24. M.A Semenov, T.V. Bol’buh, A.A. Krasnitskaya, V.Ya. Maleev // Radiation, Biology, Radioekology, 34, pp. 328-335 (1994).
25. P. Gaigeot, N. Leulliot, M. Ghomi, H. Jobic, C. Coulombeau, O. Bouloussa // Chemical Physics, 261, pp. 217-237 (2000).
https://doi.org/10.1016/S0301-0104(00)00224-X
26. G.I. Dovbeshko, O.P. Repnytska, V.P. Tryndyak, I.M. Todor, G.I. Solyanik, V.F. Chehun. In the book: Frontiers of Multifunctional Nanosystems. Kluwer Academic Publishers: Amsterdam, pp. 265-280 (2002).
https://doi.org/10.1007/978-94-010-0341-4_19
27. P. Lasch, A. Pacifico, M. Diem // Biopolymers (Biospectroscopy), 67, pp. 335-338 (2002).
https://doi.org/10.1002/bip.10095
28. M. Diem, L. Chiriboga, P. Lasch, A. Pacifico // Biopolymers (Biospectroscopy), 67, pp. 349-353 (2002).
https://doi.org/10.1002/bip.10109
29. V.V. Andrushchenko, S.V. Kornilova, L.Ye. Kapinos, E.V. Hackl, V.L. Galkin, D.N. Grigoriev, Yu.P. Blagoi, // J. Mol. Struct. 408/409, pp. 225-228 (1997).
https://doi.org/10.1016/S0022-2860(96)09672-X
30. V.A. Bloomfield // Current Opinion in Structural Biolog. 6, pp. 334 341 (1996).
https://doi.org/10.1016/S0959-440X(96)80052-2
31. V.A. Bloomfield // Biopolymers / Nucleic Acid Sci., 44, pp. 269- 282 (1998).
https://doi.org/10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T
33. H.A. Tajmir-Riahi, M. Naoui, R. Ahmad // Biopolymers, 33, pp. 1819-1827 (1993).
https://doi.org/10.1002/bip.360331208
34. H.A. Tajmir-Riahi, R. Ahmad, M. Naoui, // J. Biomol. Struct. Dyn., 10, pp. 865-877 (1993).
https://doi.org/10.1080/07391102.1993.10508680
35. H.A Tajmir-Riahi, M. Naoui, R. Ahmad // J. Biomol. Struct. Dyn., 11, pp. 83-93 (1993).
https://doi.org/10.1080/07391102.1993.10508711
36. J. Duguid, V.A. Bloomfield, J. Benevides, G.I. Thomas // Biophys. J., 65, pp. 1916-1928 (1993). 37. T.J. Tomas, Biochem.J. 298, pp. 485-491 (1994).
https://doi.org/10.1016/S0006-3495(93)81263-3
38. M. Ghomi, R. Letellier, J. Liquier, E. Taillandier // Int. J. Biochem., 22, pp. 691-699 (1990). 39. W. Pohle, H. Fritzche // Nucleic Asids Res., 8, pp. 2527-2535 (1980).
https://doi.org/10.1016/0020-711X(90)90003-L
40. J.F. Baret, G.P. Carbone, P. Penon // Biopolimers, 17, pp. 2319- 2339 (1978).
https://doi.org/10.1002/bip.1978.360171004