Semiconductor Physics, Quantum Electronics and Optoelectronics, 8 (3) P. 001-011 (2005).


References

1. T.I. Kamins, MRS Fall Meeting Abstracts, November 29 - December 3, 2004, p. 14.
2. T.I. Kamins, R.S. Williams, D.P. Basile, T. Hesjedal, J.S. Harris // J. Appl. Phys.89, p. 1008 (2001).
https://doi.org/10.1063/1.1335640
3. D. Appell // Nature 419, p. 553 (2002).
https://doi.org/10.1038/419553a
4. E.I. Givargizov, Growth of filament-like and platelet crystals from vapor, Moscow, Nauka (1977) (in Russian);
5. D.N. McIlroy, D.Zhang, Y. Kranov and M. Grant Morton // Appl. Phys. Lett. 79, p. 1540 (2001).
https://doi.org/10.1063/1.1400079
6. D.N. McIlroy, A. Alkhateeb, D. Zang et al. // J. Phys.: Condens. Matter 16, p. R415 (2004).
https://doi.org/10.1088/0953-8984/16/12/R02
7. A.I. Klimovskaya, E. G. Gule, I.V. Prokopenko, Proceedings of 17th Quantum Electronics Conference (MIEL 2000), Nis, Yugoslavia.
8. N. Combe, P. Jensen, A. Pimpinelli // Phys. Rev. Lett. 85, p. 110 (2000)
https://doi.org/10.1103/PhysRevLett.85.110
W.W. Mullins and G.S. Rohrer // J. Amer. Ceram. Soc. 83, p. 214 (2000).
https://doi.org/10.1111/j.1151-2916.2000.tb01173.x
9. Yukichi Tatsumi, Mitsuji Hirata and Mikio Shugi // Jpn J. Appl. Phys. 18, p. 2199 (1979).
https://doi.org/10.1143/JJAP.18.2199
10. A.A. Schetinin, O.D. Kosenkov, A.V. Gilyarovskii, E.E. Popova // Neorganicheskie materialy 25, p.1237 (1989) (in Russian).
11. F. Hirose // J. Cryst. Growth 179, p. 108 (1997).
https://doi.org/10.1016/S0022-0248(97)00092-4
12. A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics. Moscow, Nauka (1987) (in Russian).
13. E.M. Livshitz, L.P. Pitaevskii, Physical kinetics.Vol. X. Theoretical physics. Moscow, Nauka (1979) (in Russian).
14. D.V. Sivukhin, General course of physics. Vol II. Thermodynamics and molecular physics. Nauka, Moscow (1990) (in Russian).
15. G.A. Bird, Molecular gas dynamics. Oxford, Clarendon Press (1976).
16. C.W. Christian, The theory of transformation in metals and alloys. Part 1. Equilibrium and general kinetic theory. Oxford, Pergamon (1975).
17. S. Senkander, I. Esfandyary, G. Hobler // J. Appl. Phys. 78, p. 6 (1995).
https://doi.org/10.1063/1.360532
18. B.Ya. Lyubov, Diffusion processes in inhomogeneous solids, Nauka, Moscow (1981) (in Russian).
19. J. Bloem // Pure and Apply Chemistry 50, p.435 (1978).
https://doi.org/10.1351/pac197850050435
20. W. Moench, Semiconductor surfaces and interfaces. Springer-Verlag, Berlin, Heidelberg (1993).
21. In the general case of multicomponent surface diffusion, the term Dk Θk can be represented in the following form: D0∇{[1−ΣΘk]∇Θk + ΘkΣ∇Θk}, where D0 is the one-component diffusion coefficient and Θk is the fractional coverage of the k-th adatoms. The commonly used expression for this term D0ΔΘk is valid only for a small difference in the one-component diffusion coefficients and/or for small coverages of different adatoms. But here we do not solve continual diffusion equation.
22. R. Stratonovich // Non-linear non-equilibrium ther-modynamics. Nauka, Moscow (1985)(in Russian).
23. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Uni-versität Wien, Austria), 2001. ISBN 3-9501031-1-2.
24. G.A.D. Briggs, D.P. Basile, G. Medeiros-Ribeiro, T.I. Kamins, D.A.A. Ohlberg, and R. Stan-ley Williams // Surf. Sci. 457, p. 147 (2000).
https://doi.org/10.1016/S0039-6028(00)00347-2
25. Probability of one or multiple nucleation depends on a size of interface, i.e. radius of a wire, oversaturation, and the critical radius of the nucleus. If a rate of creation of nucleus is smaller than a rate of step propagation toward the edge of interface, than the wire grows by the mechanism of one nucleation. One nucleation is a likely pathway for growth of nano wires.
26. A.A. Chernov // Kristallografia 16, p. 842 (1971) (in Russian).
27. A.A. Schetinin, O.D. Kozenkov, A.I. Dunajev // Zhurnal Tekhnicheskoy Fiziki 53, p.1416 (1983) (in Russian).
28. B.M. Darinskii, O.D. Kozenkov, A.A. Schetinin // Izvestiya Vuzov MV& SSO, Fizika Tverdogo Tela 12, p. 18 (1986).
29. A.A. Schetinin, L.I. Bubnov, O.D. Kozenkov, A.F. Tatarenkov // Neorganicheskie materialy 23, p. 1589 (1987) (in Russian).
30. L. Schubert, P. Werner, N.D. Zakharov et al. // Appl. Phys. Lett. 84, p. 4968 (2004).
https://doi.org/10.1063/1.1762701
31. J.L. Liu, S.J. Cai, G.L.Jin, and K.L. Wang // Electrochemical and Solid-State Letters 1, p.188 (1998).
32. E.I. Givargizov // J. Crystal Growth 31, p. 20 (1975).
https://doi.org/10.1016/0022-0248(75)90105-0
33. N.I. Vitrichovskii, B.I.Lev, P.M. Tomchuk // Ukr. Phys. Journ. 33, p. 1713 (1988).
34. S. Sharma, T.I. Kamins, and R.S. Williams // J. Crystal Growth 267, p. 613 (2004).
https://doi.org/10.1016/j.jcrysgro.2004.04.042
35. T.I. Kamins, X. Li, and R.S. Williams // Appl. Phys. Lett. 82, p. 263 (2003).
https://doi.org/10.1063/1.1534616
36. A.I. Klimovskaya, I.V. Prokopenko and I.P. Ostrovskii // J. Phys.: Condens. Matter 13, p. 5923 (2001).
37. A.I. Klimovskaya, I.V. Prokopenko, S.V. Svechnikov et al. // J. Phys.: Condens. Matter 14, p. 1735 (2002).
https://doi.org/10.1088/0953-8984/14/8/304