Semiconductor Physics, Quantum Electronics and Optoelectronics, 8 (3) P. 001-011 (2005).
References
1. T.I. Kamins, MRS Fall Meeting Abstracts, November 29 - December 3, 2004, p. 14. | | 2. T.I. Kamins, R.S. Williams, D.P. Basile, T. Hesjedal, J.S. Harris // J. Appl. Phys.89, p. 1008 (2001). https://doi.org/10.1063/1.1335640 | | 3. D. Appell // Nature 419, p. 553 (2002). https://doi.org/10.1038/419553a | | 4. E.I. Givargizov, Growth of filament-like and platelet crystals from vapor, Moscow, Nauka (1977) (in Russian); | | 5. D.N. McIlroy, D.Zhang, Y. Kranov and M. Grant Morton // Appl. Phys. Lett. 79, p. 1540 (2001). https://doi.org/10.1063/1.1400079 | | 6. D.N. McIlroy, A. Alkhateeb, D. Zang et al. // J. Phys.: Condens. Matter 16, p. R415 (2004). https://doi.org/10.1088/0953-8984/16/12/R02 | | 7. A.I. Klimovskaya, E. G. Gule, I.V. Prokopenko, Proceedings of 17th Quantum Electronics Conference (MIEL 2000), Nis, Yugoslavia. | | 8. N. Combe, P. Jensen, A. Pimpinelli // Phys. Rev. Lett. 85, p. 110 (2000) https://doi.org/10.1103/PhysRevLett.85.110 | | W.W. Mullins and G.S. Rohrer // J. Amer. Ceram. Soc. 83, p. 214 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01173.x | | 9. Yukichi Tatsumi, Mitsuji Hirata and Mikio Shugi // Jpn J. Appl. Phys. 18, p. 2199 (1979). https://doi.org/10.1143/JJAP.18.2199 | | 10. A.A. Schetinin, O.D. Kosenkov, A.V. Gilyarovskii, E.E. Popova // Neorganicheskie materialy 25, p.1237 (1989) (in Russian). | | 11. F. Hirose // J. Cryst. Growth 179, p. 108 (1997). https://doi.org/10.1016/S0022-0248(97)00092-4 | | 12. A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics. Moscow, Nauka (1987) (in Russian). | | 13. E.M. Livshitz, L.P. Pitaevskii, Physical kinetics.Vol. X. Theoretical physics. Moscow, Nauka (1979) (in Russian). | | 14. D.V. Sivukhin, General course of physics. Vol II. Thermodynamics and molecular physics. Nauka, Moscow (1990) (in Russian). | | 15. G.A. Bird, Molecular gas dynamics. Oxford, Clarendon Press (1976). | | 16. C.W. Christian, The theory of transformation in metals and alloys. Part 1. Equilibrium and general kinetic theory. Oxford, Pergamon (1975). | | 17. S. Senkander, I. Esfandyary, G. Hobler // J. Appl. Phys. 78, p. 6 (1995). https://doi.org/10.1063/1.360532 | | 18. B.Ya. Lyubov, Diffusion processes in inhomogeneous solids, Nauka, Moscow (1981) (in Russian). | | 19. J. Bloem // Pure and Apply Chemistry 50, p.435 (1978). https://doi.org/10.1351/pac197850050435 | | 20. W. Moench, Semiconductor surfaces and interfaces. Springer-Verlag, Berlin, Heidelberg (1993). | | 21. In the general case of multicomponent surface diffusion, the term Dk Θk can be represented in the following form: D0∇{[1−ΣΘk]∇Θk + ΘkΣ∇Θk}, where D0 is the one-component diffusion coefficient and Θk is the fractional coverage of the k-th adatoms. The commonly used expression for this term D0ΔΘk is valid only for a small difference in the one-component diffusion coefficients and/or for small coverages of different adatoms. But here we do not solve continual diffusion equation. | | 22. R. Stratonovich // Non-linear non-equilibrium ther-modynamics. Nauka, Moscow (1985)(in Russian). | | 23. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Uni-versität Wien, Austria), 2001. ISBN 3-9501031-1-2. | | 24. G.A.D. Briggs, D.P. Basile, G. Medeiros-Ribeiro, T.I. Kamins, D.A.A. Ohlberg, and R. Stan-ley Williams // Surf. Sci. 457, p. 147 (2000). https://doi.org/10.1016/S0039-6028(00)00347-2 | | 25. Probability of one or multiple nucleation depends on a size of interface, i.e. radius of a wire, oversaturation, and the critical radius of the nucleus. If a rate of creation of nucleus is smaller than a rate of step propagation toward the edge of interface, than the wire grows by the mechanism of one nucleation. One nucleation is a likely pathway for growth of nano wires. | | 26. A.A. Chernov // Kristallografia 16, p. 842 (1971) (in Russian). | | 27. A.A. Schetinin, O.D. Kozenkov, A.I. Dunajev // Zhurnal Tekhnicheskoy Fiziki 53, p.1416 (1983) (in Russian). | | 28. B.M. Darinskii, O.D. Kozenkov, A.A. Schetinin // Izvestiya Vuzov MV& SSO, Fizika Tverdogo Tela 12, p. 18 (1986). | | 29. A.A. Schetinin, L.I. Bubnov, O.D. Kozenkov, A.F. Tatarenkov // Neorganicheskie materialy 23, p. 1589 (1987) (in Russian). | | 30. L. Schubert, P. Werner, N.D. Zakharov et al. // Appl. Phys. Lett. 84, p. 4968 (2004). https://doi.org/10.1063/1.1762701 | | 31. J.L. Liu, S.J. Cai, G.L.Jin, and K.L. Wang // Electrochemical and Solid-State Letters 1, p.188 (1998). | | 32. E.I. Givargizov // J. Crystal Growth 31, p. 20 (1975). https://doi.org/10.1016/0022-0248(75)90105-0 | | 33. N.I. Vitrichovskii, B.I.Lev, P.M. Tomchuk // Ukr. Phys. Journ. 33, p. 1713 (1988). | | 34. S. Sharma, T.I. Kamins, and R.S. Williams // J. Crystal Growth 267, p. 613 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.042 | | 35. T.I. Kamins, X. Li, and R.S. Williams // Appl. Phys. Lett. 82, p. 263 (2003). https://doi.org/10.1063/1.1534616 | | 36. A.I. Klimovskaya, I.V. Prokopenko and I.P. Ostrovskii // J. Phys.: Condens. Matter 13, p. 5923 (2001). | | 37. A.I. Klimovskaya, I.V. Prokopenko, S.V. Svechnikov et al. // J. Phys.: Condens. Matter 14, p. 1735 (2002). https://doi.org/10.1088/0953-8984/14/8/304 | |
|
|