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Abstract. A theory describing a spin-dependent transport of electrons through a thin 
metallic (or insulator) nonmagnetic layer sandwiched between two ferromagnets is 
developed in the ballistic regime and current-perpendicular-to-plane (CPP) geometry. 
The theory is based on the Landauer formalism and the transmission amplitude for the 
electron Bloch waves with an arbitrary dispersion law travelling from one ferromagnet to 
another through a nonmagnetic spacer (metallic or insulator). The semiclassical (non-
oscillating) part of the magnetoresistance ratio for a metallic spacer is considered in the 
effective-mass approximation for the sandwich band structure. The parameters defining 
the value of the giant magnetoresistance (GMR) effect are obtained. It is shown that the 
electron specular scattering on the interfaces may be the cause for the CPP GMR effect. 
The influence of the electronic structure on the CPP GMR effect has been studied 
numerically in the effective-mass approximation. 
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1. Introduction 

Transport phenomena in the artificial structures consisting 
of alternating magnetic and nonmagnetic layers, each of a 
few atomic layers thick, have been attracting a great deal 
of interest especially since the discovery of the giant 
magnetoresistance (GMR) effect in metallic magnetic 
multilayers [1] and sandwiches of two magnetic layers 
separated by a nonmagnetic spacer [2]. These structures 
exhibit GMR under certain conditions. One of them is a 
possibility to switch between antiparallel (AP) and 
parallel (P) alignments of magnetization vectors of 
ferromagnetic layers in a multilayer or sandwich. It can be 
achieved by various methods, particularly, using a 
periodic dependence of a sign of the interlayer exchange 
interaction between ferromagnetic layers on the nonma-
gnetic layer thickness [3]. On the other hand, a difference 
between the P and AP configurations is important because 
both an electron scattering by defects in a bulk of 
magnetic layers or at the interfaces and a potential profile 
for electrons are spin-dependent, i.e., depend on an 
orientation of an electron spin relatively to the direction of 
the magnetic layer magnetization. When the layer 
thicknesses are less than the spin-diffusion length (a spin-
flip scattering is absent), the spin-dependent scattering 
(SDS) by defects and a spin-dependent electronic struc-
ture of a multilayer or sandwich give rise to the GMR. 

Recently, Schep et al. [4] calculated the GMR for a 
perfect infinite superlattice using an ab initio bandstruc-
ture and found that in the ballistic regime for electrons 

(no scattering by defects at all) the GMR in the current-
perpendicular-to-plane (CPP) geometry can be as large 
as in the diffusive regime where scattering by defects 
plays a decisive role in determining the resistance. Thus, 
an important role of a difference in electronic structure 
between P and AP configurations of magnetic multi-
layers in explaining the GMR has been demonstrated. 
The quantum scattering from wells and a quantum 
interference effect play an important role in an 
explanation of the GMR in the case of ballistic regime. 

There have been several works treating the GMR in 
the ballistic regime. They are based mainly on an exact 
evaluation of the Kubo formula. Mathon et al. [5] have 
calculated the ballistic CPP GMR of a Co/Cu/Co trilayer 
using realistic tight-binding bands fitted to ab initio band 
structures of Cu and Co. They found that the CPP GMR 
without impurity scattering can be as high as 90% and is 
due solely to quantum reflections of electrons from 
perfectly flat Co/Cu interfaces. Quantum interference 
effect leads to oscillations of the CPP GMR with the 
spacer and ferromagnet thickness [5, 6]. The same 
approach was used by Mathon [7] for numerical 
calculation of ballistic transport through Co/Cu and 
Fe/Cr multilayers of a finite thickness. General Green's 
function formalism was developed in [8], which is 
applicable to studying the CPP conductance in magnetic 
multilayers and tunneling spin valves with general tight-
binding Hamiltonians. 

Much less attention has been paid to consideration of 
the giant magnetoresistance effect beyond the tight-
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binding approximation for an electronic spectrum. It is 
well known that for electrons which contribute most to the 
conductivity the tight-binding approach is not the best 
one. In our previous work [9], we obtained the general 
transmission amplitude for the electron Bloch waves with 
an arbitrary dispersion law traveling from one magnetic 
layer to another through a nonmagnetic spacer with a 
thickness that is much less that the mean free path 
(ballistic regime for a spacer). The obtained transmission 
coefficient allowed for treating a magnetoresistance in 
metallic multilayers or sandwiches with the thickness of 
magnetic layers exceeding the electron mean free path [9]. 

In this paper, we apply the Landauer formalism and 
the electron transmission amplitude obtained in [9] to 
studying the spin-dependent transport of two semi-infinite 
ferromagnets separated by thin nonmagnetic layer in the 
CPP geometry. The nonmagnetic spacer can be, in 
general, either metallic or insulator. We have considered 
the case of a metallic spacer and obtained the general 
expressions for the semi-classical (nonoscillating) part of 
the GMR ratio. For analytical and numerical study of the 
CPP GMR, the electronic structure has been modeled by 
the parabolic spectrum with the spin- and metal-dependent 
conduction band profile and the spin- and metal- 
dependent effective masses. The semi-classical part of the 
GMR ratio considered in the effective-mass appro-
ximation for the bandstructure allowed us to find the 
parameters defining the GMR ratio. Numerical 
calculations have been performed for the full quantum 
mechanical GMR ratio in the model of free electrons and 
in the effective-mass approximation with different masses 
in different layers. Dependencies of the GMR ratio on the 
electrons polarization, the spacer potential well depth, the 
spacer thickness and electron masses have been 
numerically obtained. It has been shown that the modeling 
a bandstructure in the effective-mass approximation 
allows for explaining the large values of the GMR in the 
ballistic regime. The conditions under which the large 
GMR effect can be reached are obtained in the effective-
mass approximation for the electron spectrum. 

2. Transmission amplitude 

Consider two ferromagnetic conductors separated by a 
nonmagnetic layer (spacer). We suppose that the thickness 
of a spacer d is much smaller than the electron mean free 
path but much larger than the Fermi wavelength which is 
of the order of a lattice parameter. Then the relevant 
electronic states can be described by the Bloch waves at 
the Fermi energy. On the contrary, the thickness of both 
magnetic layers is sufficiently large in order to guarantee 
the thermal equilibrium for electrons in magnetic layers 
and continuous electronic spectrum. The interfaces 
between magnetic and nonmagnetic substances are 
considered as the perfect ones and, therefore, the in-plane 
translational invariance is preserved. Therefore, we 
assume here that the main contribution to the resistance of 
the system comes from quantum reflections of electrons 
from perfectly flat interfaces. 

For the system under consideration, the Landauer 
formalism [10] can be applied for studying the transport 
phenomena. Since the wave vector ),(||

yx kk=k  
parallel to the layers remains a good quantum number, 
the partial Landauer conductance in some spin channel 

σσ ′G  at zero temperature can be presented as (for the 
CPP geometry) 

∑ ′′ =
||

)( ||
2

k

kσσσσ T
h

eG  (1) 

where )( ||kσσ ′T  is the transmission coefficient for an 
electron passing through a nonmagnetic spacer from one 
magnetic layer, where the projection of an electron spin 
on the direction of magnetization vector is σ, to another 
magnetic layer, where this projection is σ′ (no spin-flip 
processes are allowed). We might consider a more 
general situation when σ labels also other quantum 
numbers (e.g., orbital indexes). Here, we suppose that 
the Fermi level crosses only one band in each layer. The 
sum in Eq.(1) is over all k| | in the two-dimensional 
Brillouin zone (the integration over k| | leads to 
appearance of the spacer cross section S, which is 
supposed to be small enough in the case of a metallic 
spacer to guarantee a measurable resistance coming 
mainly from quantum scattering by interfaces between 
ferromagnets and spacer). In the case of a metallic 
spacer the summation is performed only over transverse 
wave vectors corresponding to propagating modes 
(evanescent states are exponentially localized at the 
interfaces and do not contribute to the conductance). 
These wave vectors are defined by a spin-dependent 
potential profile for spin-up and spin-down electrons in a 
given configuration of magnetic layers. The transmission 
coefficient is taken at the energy E = EF that is justifiable 
for a small applied external voltage. 

The conventional magnetoresistance (MR) ratio, 
defined in terms of the conductances for ferromagnetic 
(F) and antiferromagnetic (AF) configurations of 
magnetic layers, is given by 

↑↓↑↓↓↓↑↑ −+= GGGGR 2/)2(  (2) 
or 

)/()2( ↓↓↑↑↑↓↓↓↑↑ +−+=′ GGGGGR . (3) 

The arrow up (down) ↑(↓) indicates that the 
electron spin is parallel (antiparallel) to the magnetic 
layer magnetization. Note, that the summations over 
transverse wave vectors corresponding to propagating 
states in Eq. (1) generally are over different areas of k| |-
plane for ↑↑G , ↓↓G  and ↑↓G . For example, the 
transmission in the AF case is possible only for the states 
with the in-plane vectors k| | belonging to both sheets of 
the Fermi surface (corresponding to spin up and spin 
down) of magnetic layers simultaneously, i.e., when 
there is an intersection of projections of these sheets on 
the k| |-plane. 
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According to [9] the transmission amplitude for an 
electron moving from one magnetic layer to another one 
through a nonmagnetic spacer has the form 

),(),()2exp(1
])(exp[),(),(

),(
222222222

3232212112
31 zzzzz

zzzzzz
zz

kkkkdik
dkkikkkk

kkA
−−−

−
=

αα
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. 

(4) 

Here ),( nnij ′kkα (i, j = 1, 2; n, n′ = 1, 2, 3) are the amp-
litudes of transmission or reflection from i-th substance 
to the j-th one. The magnetic substance is numbered by 1 
and the nonmagnetic one by 2. The first variable in the 
functions ),( nnij ′kkα  corresponds to the initial 
incoming electron wave vector and the second one 
corresponds to the final electron state (transmitted or 
reflected). All these functions depend on an electron 
spin. The amplitude [4] describes the situation when the 
electron Bloch wave with the wavevector k1 travelling 
from the left magnetic layer through a spacer (where an 
electron state is characterized by k2) experiences 
multiple scattering by a quantum well/barrier before 
reaching the second magnetic layer in the state with the 
wavevector k3. Dependence of amplitudes αij on k| | is 
suppressed for brevity in (4) because k| | is conserved (z-
axis is directed perpendicular to the interfaces). On the 
other hand, z

nk  are the functions of an electron energy E 
(which is also conserved) and k| | in each layer, 

),( ||kEk n
z
n Φ= . Thus, αij are the functions of k| | and E. 

Note, that n, in fact, indicates not only the number of a 
layer but also the corresponding sheet of the magnetic 
layer Fermi surface (for a small external voltage we 
evaluate the transmission coefficient at E = EF). The 
wave vectors k1 and k3 must be equal for F 
configuration, when the electron states belong to the 
same sheet of the Fermi surface at both sides of a spacer, 
whereas these vectors are different for AF configuration. 

The electron transmission coefficient is defined as 

2
31

1

3
31 |),(|),( zz

z

z
zz kkA

V
V

kkT = , (5) 

where zV3  and zV1  are the velocity z-components for the 
transmitted and incoming electron states, respectively. 
The electron velocity is defined in each layer by the 
corresponding electronic spectrum )( nnE k : 

n

nn
n

E
k

kV
∂

∂
=

)(1
h

(n = 1, 2, 3). Thus, the transmission 

coefficient essentially depends on the spin-dependent 
electronic structure of the trilayer under consideration. 
The transmission coefficient (5) is symmetric over 
incoming and outgoing electron waves. 

In what follows, we will consider the case of 
metallic spacer using the general formula for the 
transmission coefficient (5). 

3. Metallic spacer 

In this case, all wave vectors kn (n = 1, 2, 3) are real. 
Then, the transmission coefficient (5) can be represented 
in terms of the transmission coefficients through 

separate interfaces 2
2112

1

2
1 |),(| zz

z

z
kk

V
VT α=  and 
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(6) 

The formula (6) shows that the transmission 
coefficient is a periodic function of a spacer thickness d 
with a period determined by electron wave vector in a 
nonmagnetic metal (factor dk z

2 ). Survival of these 
oscillations of an integration over k| | depends on the 
specific features of the spacer Fermi surface. 

Expanding (6) in an infinite series of terms 
corresponding to an electron transmission through a 
spacer after any number of subsequent reflections from 
interfaces within a spacer, we can separate a semi-
classical (nonoscillating) part of the transmission 
coefficient from quantum (oscillating) terms arising due 
to quantum interference effect. As a result, we have 

)()()( |||||| kkk qc TTT += , (7) 

where 
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(9) 
Here, ),(),()( 22222222||

zzzz kkkkC −−= ααk  is, in 
general, a complex quantity, which can be presented as 

)(
||||

|||)(|)( kkk ϕieCC = . We used also that =2
|| |)(| kC  

2121 )1)(1( RRTT =−−= , where R1 and R2 are the 
reflection coefficients from the first and the second 
interfaces, respectively (in the considered case of a 
metallic spacer). 

Let us consider the semi-classical part of the 
transmission coefficient more carefully. Restoring 
indexes of spin projections σσ ′, , we can rewrite (8) as 

 

σσσσ

σσ
σσ
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′
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where σ
iT (i = 1, 2) is the transmission coefficient for an 

electron with fixed spin projection σ (relatively to a 
magnetization vector) moving through a single interface 
between magnetic and nonmagnetic layers. It is easy to 
see that ↑↑↑ == TTT 21  and ↓↓↓ == TTT 21 , i.e., the 
transmission coefficient through a single interface is the 
same for an electron moving from one magnetic layer 
(1) to nonmagnetic spacer (2) and for an electron 
moving in the opposite direction, if the electron spin 
projection on the magnetization direction in the 
magnetic layer is kept fixed. Using this symmetry, one 
can easily show that 

↓↓↑↑

↓↓↑↑
↑↓

+
=

cc

cc
c

TT
TTT 2 , (11) 

 where 
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2
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Using the relation (11), we can present the GMR 
ratio (2) for the semi-classical transmission coefficient 
as 
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 Here, ↑
||k , ↑

||k  and s
||k  are the maximum two-

dimensional transverse vectors restricting the area of 
propagating modes for spin-up, spin-down and spacer 
electrons, respectively. Eq. (13) is valid only if the two-
dimensional area of propagating wave vectors for the 
spin-down electrons does not exceed that for the spin-up 
electrons ↓↑ ≥ |||| kk . If ↑↓ ≥ |||| kk , the GMR ratio is given by 

Eq. (13) with the reversed arrows' directions (↑⇆ ↓) 
everywhere including the limits of summations. One can 
see that the GMR ratio (13) is always positive. The 
relations (12) indicate that the GMR ratio can be 
represented in terms of the transmission coefficients T↑(↓) 
corresponding to electron transfer from a magnetic layer 
to a nonmagnetic spacer (or vice versa) 

 
 

For ↑↓ ≥ |||| kk  Eq. (13) also holds if the substitution  
↑ ⇆ ↓ is made. 

To get more insight into the problem under 
consideration, we adopt a simple model of a parabolic 
free-like electronic spectrum in the effective-mass 
approximation with effective masses being different, in 
general, in different layers. Then, the spin-dependent 
potential steps at the interfaces are caused by the 
difference in the bottom energy of the conduction bands 
(here we assume that the exchange splitting of bands in a 
ferromagnet is less than the Fermi energy EF and EF 
exceeds the potential step of a spacer). In this case, the 
amplitudes of transmission and reflection αij take the form 
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 Using this result, we get from (6) [9] 
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 We remind that zz VV 31 ≠  in the case of AF 

arrangement of magnetic layers, and zV2  corresponds to 
the electron velocity in a spacer. The transmission 
coefficient for an electron with a given spin projection 
on the magnetization direction (↑ or ↓) moving from a 
magnetic layer to a spacer in this case may be written as 
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where we introduced the notations 
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Substituting (17) into (14), we get 
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where 
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is the effective spin polarization factor for the ferro-
magnet-spacer electron transmission, and 
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Eqs (20) and (21) are the generalization of the 
corresponding factors, which appeared in the free-
electron theory of the tunneling magnetoresistance effect 
[11]. When ↑↓ ≥ |||| kk , in Eq.(19) all arrows should be 
reversed (↑⇆ ↓). 

To obtain the total R (2), the quantum part of it, 
defined by the quantum part of the transmission 
coefficient (9), should be included in (14) or (19). 

4. Numerical results 

A numerical calculation of the CPP GMR has been 
performed in the effective-mass approximation when 
Eqs (15)-(21) are applicable. The influence of the 
electronic structure on the CPP GMR has been studied in 
terms of the isotropic effective masses, which may be 
metal- and spin-dependent, and a constant in each layer 
spin- and metal-dependent conduction-band profile. 
Thus, the relevant quantities defining the transport 
properties of the system take the form 
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where 0)(
F

)( ≥−= ↓↑↓↑ UER , 0F ≥−= ss UER . 

Here )(↓↑m , sm  and )(↓↑U , sU are the effective 
masses and potentials in magnetic layers (for spin-up 
and spin-down electrons) and in a spacer, respectively. 
Thus, the maximum values of k| | in magnetic layers and 
a spacer (corresponding to propagating modes), which 
define the areas of integration in Eq. (19), are 
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They depend in the model under consideration on 
the potential wells )(↓↑R , sR  and the effective masses 

)(↓↑m , sm  in different layers. 

Eqs (19)-(21) indicate that there are several factors 
influencing the MR ratio, such as, e.g., the spin 
polarization 

↓↑

↓↑

+

−
=

00

00
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VV
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taken at k| | = 0, and the overlapping of the spin-up and 
spin-down Fermi surface leaves projections on the k| |-
plane corresponding to propagating states. This 
overlapping is defined by the minimal value among the 
wave vectors (23). The second terms in Eqs (13), (14) 
and (19) are defined by the difference of the k| |-planes 
contributing to the conductance in the parallel and 
antiparallel configurations of magnetization directions in 
magnetic layers. As it is seen from Eqs (22) and (23), the 
electron velocities and the integration areas in Eq. (18) 
over the k| |-plane depend on the depth of the potential 
wells )(↓↑R , sR  and the electron effective masses in 
different layers as well. Thus, )(↓↑R , sR  and )(↓↑m , 

sm  are also the important parameters of the model 
under consideration. 

First, we will consider the dependence of the MR 
ratio on the electron polarization P0 (24). Because |P0| 
changes from 0 to 1, it is reasonable to calculate the 
dependence on P0 of the MR ratio R′ defined by Eq.(3) 
where σσ ′G is defined by Eq. (1). Numerical evaluation 
of the conductances σσ ′G  has been performed using 
Eqs (1) and (16) for the transmission coefficient, which 
is exact in the effective-mass approximation and takes 
into account the quantum interference effects. These 
effects manifest themselves through the dependence of 
the transmission coefficient (16) on the thickness of a 
spacer d and the electronic wavelength in a spacer 

1
2 )(~ −zk . The area of integration over k| | in each term of 

Eq. (3) is restricted to the minimal value among the 
wavevectors (23). For simplicity, the calculation was 
performed, first, for free electrons, when )(↓↑m  = sm = 
m, where m is the free electron mass. The calculated 
dependence of the MR ratio (3) on P0 at different spacer 
thicknesses and potential wells is shown in Fig. 1. 

This dependence exhibits several characteristic 
features. When the spacer potential well is not very deep 
(Fig. 1a), the MR ratio at small values of P0 differs not 
much for different spacer thicknesses and increases 
monotonically and not very fast. At small P0 and 

↑↓ <<< RRRs , the integration domain for all σσ ′G  is 

defined by sR  and remains constant while sRR ≥↓ . 
With increasing P0 (increasing ↓↑ − RR  and decreasing 

↓R ) the MR ratio reaches some intermediate maximum 
at sRR =↓ . At sRR <↓  the area of integration over k| | 
for ↓↓G and ↑↑G  is defined by ↓R and diminishes with 
increasing P0. Then, the oscillations of the MR ratio 
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occurs, the amplitudes of which depend on the spacer 
thickness. At some spacer thicknesses, the amplitude of 
the oscillation is so large that the MR ratio becomes 
negative. These large oscillations are due to the quantum 
interference effect. For sufficiently large P0, the MR 
ratio R′ reaches a significant value and tends to the 
maximum value R′ = 1. 

When a spacer potential well is deep enough 
(Fig. 1b), the MR ratio varies smoothly (oscillations are 
small) and does not depend significantly on the spacer 
thickness. 

In what follows, the MR ratio defined by Eq. (2) 
will be used for numerical calculation as well as Eqs (1) 
and (16). Dependence of the MR ratio R on the depth of 
a potential well sR  calculated for free electrons is 
shown in Fig.2. At ↓< RRs  the MR ratio is small and 
changes with sR  slowly. In the range ↑↓ ≤≤ RRR s  it 
increases sharply by 10-30 times and reaches a 
maximum at ↑= RRs . This maximum value of the MR 
ratio may be estimated at the considered small value of 
P0 as 

)(),2/()(max
↑↓↓↑ =−≈ RRRRRR s  (25) 

where ↓↑ > RR  for the model of free electrons. Then, at 
↑> RRs the function )( sRR fluctuates around some 

average value which is slightly smaller than Rmax. 
 
 
 
 

 
 
 

 
 

Fig. 1. MR-ratio dependence on the polarization P0 for not 
very deep (a) and deep (b) potential well. 

Such a behavior may be understood in terms of 
semi-classical Eq. (19) for the MR ratio. At 

↑↓ << RRRs the second term in Eq. (19) is absent and 
the MR ratio is small when P0 << 1. When sR  reaches 

↓R , then the second term in Eq. (18) emerges and 
begins contributing to cR . Its contribution rises with sR  
because the integration domain in the second term of the 
numerator is equal to ↓− |||| kk s  and reaches the maximum 

value ↓↑ − |||| kk  when ↑= RRs . The integrand of this term 
↑↑T  also increases with sR  and reaches its maximum 

value ↑↑T = 1 when the majority band (spin-up) and the 
electronic band in a spacer become equivalent (at 

↑= RRs ). Then, the integration over 2
||k  in the second 

term of the numerator of Eq. (18) at ↑= RRs  results in 
2/)(π2 h↓↑ − RRm . The denominator of Eq. (19) at 

P(k| |) << 1 and ↑= RRs  gives 2/π4 h↓mR  (D(k| |) ≈ 1 

when the electron polarization is small, ↓↑ ≈VV . It easy 
to see from Eqs (19)-(21) that, when the polarization P is 
small and ↑≈ RRs , the contribution of the second term 
to Eq. (19) becomes dominant. Further sR  increasing 
does not change the integration domain in the second 
term of Eq. (19) but the transmission coefficient ↑↑T and 
the factor D in Eq. (19) become smaller, i.e., the MR 
ratio R diminishes on average. 

Fig. 2 indicates that the maximum value of the MR 
ratio R as a function of a potential well depth sR  
depends not only on the electron polarization ( ↓↑ − RR ) 
but also on the absolute values of ↑R  and ↓R . The 
bigger the difference ↓↑ − RR  the larger the MR ratio. 
At fixed ↓↑ − RR , the smaller the absolute values of ↑R  
and ↓R  the bigger MR ratio R. Such a behavior agrees 
with the estimate (25) for the maximum value of R. 

 

 
 
Fig. 2. MR-ratio dependence on the potential well depth Rs for 
different values of R↓ and R↑. 
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Fig. 4. MR-ratio dependence on the value msRs. I – for the 
value of m↓ = 1. II – for the value of m↓ = 8. 

 
 
Fig. 3. MR-ratio dependence on the potential well depth Rs for 
different spacer thicknesses d. 

 
 
Oscillations of the MR ratio seen in Fig. 2 are 

caused by the quantum interference effect and can not be 
described by the classical Eq. (19). It is evident from 
Eq. (16) for the transmission coefficient, that the spacer 
thickness d should influence the period and amplitude of 
these oscillations. The dependence of )( sRR  at different 
spacer thicknesses is shown in Fig. 3. The MR ratio 

)( sRR  oscillates around some average value of R which 
does not depend on d and is approximately equal to Rmax 
(25). The bigger d the smaller the period and amplitude 
of oscillations. 

In the free-electron approximation, there is no other 
way to increase the MR ratio but raising the electron 
polarization P0 which for free electrons is 

)/()(0
↓↑↓↑ +−= RRRRP . (26) 

However, the electron polarization in ferromagnets 
is normally not very high, P0 << 1, and defined by an 
internal effective magnetic field. Thus, the maximum 
value of the MR ratio (25) in this model can not be made 
large enough with an exception of the case, when the 
magnetic layers are made of semi-metals where P0 is 
close to unity [12]. 

In the effective-mass approximation, however, 
there are more parameters to adjust a theory to an 
experiment and to show a way to finding the new 
materials with a large GMR effect. We have seen that 
the MR ratio sharply increases at the expense of the 
second term in Eq. (19) which is proportional (roughly) 
to the integration domain of the numerator of this term 
(see Eq. (25)). In the effective-mass approximation, the 
maximum value of this integration area is 

2/||2 h↓↓↑↑ − RmRm  and is achieved when 

),max( ↓↓↑↑= RmRmRm ss . (27) 

The latter condition follows from the fact that in 
the effective-mass approximation the maximum value 

↑
||k  (22) may become smaller than ↓

||k  due to the 

effective masses ↑m  and ↓m  difference (although 

↑R  > ↓R  by definition). If  ↓
||k  ≥ ↑

||k , then in Eq. (19) 
all the arrows should be reversed. Thus, in the effective-
mass approximation, one might expect that at 

),max( ↓↓↑↑= RmRmRm ss  the maximum value of the 
MR ratio would be 

)],min(2/[||max
↓↓↑↑↓↓↑↑ −≈ RmRmRmRmR . (28) 

We see that in this approximation there is a 
possibility to increase the MR ratio by assigning the 
different effective electron masses to different layers. 
Assigning the different effective masses to different 
layers (the spin-up and spin-down Fermi surface leaves 
in a magnetic material) is a reasonable thing to do when 
trying to account for a rather complicated electronic 
structure of multilayers and sandwiches exhibiting the 
GMR effect. For numerical calculation, we have 
considered the case when the effective masses of 
electrons in a nonmagnetic spacer and for the majority 
spin (spin-up) in a magnetic layer are equal to a free 
electron mass, mmm s ==↑ . This is a good 
approximation, e.g., for the band structure of Co, Ni and 
Cu around the Fermi energy. On the other hand, a free 
electron description for the minority spin is not generally 
a good one. Thus, we calculated the dependence of the 
MR ratio on the spin-down effective mass ↓m , which is 

shown in Figs 4 and 5. The values of ↑R  and ↓R  are 
selected as the one-site energies in Ni for majority and 
minority spin, respectively. The thickness of the spacer 
is selected to be big enough, d = 50 Å, in order to avoid 
significant fluctuations, which may shadow the main 
trend of the MR ratio change. 

Fig. 4 shows the dependence of the MR ratio (2) on 
the spacer potential well depth, )( sRR , for ↓m = 1 and 

↓m = 8 (in the free electron mass units). The first line (I) 
is identical to that for the free electron case (solid line in 
Fig. 2) with the maximum value approximated by 
Eq. (25). The maximum of the second line (II) ( ↓m = 8) 

is reached when ↓↓= RmRm ss (here )↑↑↓↓ > RmRm  
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Fig. 5. GMR-ratio dependence on m↓: I – for the small value of 
Rs (Rs = R↑ = 2.114 eV), II – for the large value of Rs (Rs = 
= 7.0 eV). III – dependence of the maximum value (Eq. 27) 
on m↓. 
 

and may be approximated by (28), which for the selected 
parameters is Rmax ≈ 2.1. The origin of this maximum 
may be explained in the same way as it was done for the 
free-electron approximation (line I in Fig. 4). When 

↑↑≤ RmRm ss , the second term in Eq. (19) is absent 

( ↓
||k  ≤ sk || < ↑

||k ), and the MR ratio changes slowly. At 
↑↑> RmRm ss  the second term in Eq. (19) emerges 

( ↑
||k  < sk || < ↓

||k ) and increases with ssRm  because the 
area of integration enlarges. The maximum is reached at 

↓↓= RmRm ss ( sk || = ↓
||k ) when the integration domain of 

the term under consideration becomes maximal and does 
not increase with the further increasing of sk || . 

In order to study the dependence of the MR ratio 
(2) on ↓m , we will fix the only free parameter left – the 
spacer potential well depth sR  (we remind that 

mmm s ==↑ ). Fig. 5 shows the calculated dependence 

R( ↓m ) at the large (line II) and small (line I) value of 
sR , when sR  = 7 eV > ↑R  > ↓R  and sR = ↑R =  

= 2.114 eV, respectively. The line III shows the 
dependence of the maximum value (28) on ↓m , 

Rmax( ↓m ). All three lines exhibit a minimum at ↑↑Rm =  

= ↓↓Rm . It is evident for Eq. (28), and, according to 

Eq. (18), the increase of ↓↓Rm  up to ↑↑Rm  leads in the 
considered cases to the decreasing of the second term in 
Eq. (19), which becomes equal to zero at ↑

||k  = ↓
||k . 

Further increasing of ↓m  in the case, when 
sR > ↑R > ↓R  (line II), leads to the non-zero and 

increasing second term of Eq. (19) (with reversed arrows 
at ↓

||k  > ↑
||k ) which results in the sufficiently sharp 

increase of the MR ratio. At ↓↓Rm < ss Rm  and up to 

the value ↓↓Rm  = ss Rm  the MR ratio increases 

rapidly (more general at ss Rm  ≥ max( ↑↑Rm , ↓↓Rm )). 
It is interesting that the line II practically coincides with 
Rmax( ↓m ) (line III) in the considered range of ↓m  (up to 

↓
||k = sk || . Further increasing of  ↓m   in the case sR > 

> ↑R > ↓R  (line II) does not result in the enlarging of 
Eq. (19) second term integration area, and R( ↓m ) 

increases at ↓↓Rm > ss Rm  slowly. 

In the case when sR  = ↑R  (line I), the MR ratio 
drops with ↓m  practically in accordance with the line III 

(Rmax( ↓m )) till ↓↓Rm = ↑↑Rm = ss Rm  and then 
increases very slowly, remaining small in the shown in 

Fig. 5 range of ↓m  change ( ↓↓Rm > ↑↑Rm ). Again, 
such a behavior of the MR ratio in this case corresponds 
to the contribution of the second term of Eq. (19), which 
drops to zero with the increasing of ↓↓Rm  up to ↑↑Rm  
and remains zero at ↓

||k ≥ ↑
||k  = sk || . 

Thus, the effective-mass approximation, the 
simplest one allowing to account for a rather 
complicated magnetic sandwich band structure, makes it 
possible to explain the large values of the MR ratio 
observed experimentally in sandwiches exhibiting the 
GMR effect. These values can be reached at the large 
enough spin-down electron mass ↓m , which reflects the 
well known fact that the spin-down band at the Fermi 
energy is a d-like band and the minority-electron current 
is carried by heavy d-electrons. 

5. Conclusions 

We have considered the CPP GMR in magnetic 
sandwiches with the semi-infinite magnetic layers taking 
into account the specific features of the band structure in 
the effective-mass approximation. The classical part of 
the MR ratio (19) has been obtained in this appro-
ximation. It allows the interpretation of the numerical 
results in terms of the parameters entering Eq. (19). 
Thus, the condition under which the maximum MR ratio 
can be achieved in this model is given by Eq. (27). The 
maximum MR ratio value has been estimated by 
Eq. (28). In the model of free electrons, these results 
become equal to Eq. (25). The main contribution to the 
MR ratio is defined by the difference of the k| |-planes 
restricting propagating electron modes in the F and AF 
configurations of magnetic layers. It follows from 
Eq. (28) that the difference of the electron masses in 
different layers may be crucial for achieving the sizeable 
GMR effect in magnetic sandwiches because the 
electron polarization (26) can not be usually made big 
enough. 
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Numerical calculation performed using the exact 
quantum formulas (1), (2) and (16) confirmed that to 
achieve a sizeable GMR effect a magnetic sandwich 
should be made up of magnetic layers with a big enough 
Rmax (28) divided by a nonmagnetic spacer with 

ss Rm ≳ max( ↑↑Rm , ↓↓Rm ). Particularly, it can be 
realized in magnetic materials with the heavy spin-down 
electrons. 
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