Polarized optical transmittance spectra of nonlinear thiogallate crystals near “isotropic point”

O.S. Kushnir, O.S. Dzendzelyuk, and V.A. Hrabovsky
Ivan Franko Lviv National University
107, Tarnavski str., 79017 Lviv, Ukraine
E-mail: grabovsky@rd.wups.lviv.ua, o_s_kushnir@rd.wups.lviv.ua

Abstract. The results of researches of the polarized optical transmittance spectra of nonlinear thiogallate crystals near the “isotropic point” are represented and discussed.

Keywords: polarization, optical transmittance spectra, nonlinear optics, thiogallate crystal, isotropic point.

Manuscript received 07.02.07; accepted for publication 27.09.07; published online 31.10.07.

Wide-gap semiconducting crystals of the thiogallate family are well-known and promising nonlinear materials. Among their optical properties, those occurring in a vicinity of the light wavelength $\lambda = \lambda_0$, where the ordinary and extraordinary refractive indices coincide [the point referred to as the “isotropic point” (IP)] represent a not fully resolved problem. They offer also a possibility for constructing a unique type of ultranarrow-band optical filters [1-3]. There still exist the results that have not been satisfactorily explained, e.g., the unusual spectral behaviors of the polarized light transmittances $J_{||}(\lambda)$ and $J_{\perp}(\lambda)$ detected for the input linear polarizations $E_{||}c$ and $E_{\perp}c$, and the non-polarized transmittance $J_{np}(\lambda)$ near the IP (see [1-3] and Fig. 1). The interpretation of those phenomena has been for the first time done in [2, 3], though it is mainly based on the qualitative arguments rather than on the exact analytic expressions.

The approach adopted in this study is based on the rigorous development of a hypothesis of the influence of the differential absorption [the so-called linear dichroism (LD)] on the transmittance spectra near the IP. We have derived the functions $J_{||}(\lambda)$, $J_{\perp}(\lambda)$, and $J_{np}(\lambda)$, by using the Jones matrix formalism (see [4-6]). Namely, the transmittances in the cases of the initial polarizations “1” ($E_{||}c$ or the azimuth $\varphi = 0^\circ$ – see [2, 3]) and “2” ($E_{\perp}c$ or $\varphi = 90^\circ$) are as follows:

$$J_{||} = e^{-\alpha d} \left[\cos^2 a + \sinh^2 b + \frac{\Delta^2_{||} + \Delta^2_{\perp} + \delta^2_{\perp}}{4A^2_{||}} (\sin^2 a + \sinh^2 b) \mp \Delta J \right],$$

$$J_{\perp} = (J_1 + J_2)/2,$$

$$\Delta J = \sqrt{\frac{\Delta^2_{||} + \delta^2_{\perp}}{2A_{||}}} - \sin(\arctan \frac{\delta_{||}}{\Delta_{||}} - \varphi_{\lambda}) \sin 2a + \cos (\arctan \frac{\delta_{||}}{\Delta_{||}} - \varphi_{\lambda}) \sinh 2b],$$

$$a + ib = A_\lambda \exp(\text{i} \varphi_{\lambda}) = \sqrt{(\Delta_{||} + \delta_{||})^2 + \Delta_{\perp}^2}/2,$$

$$A_\lambda = \sqrt{(\Delta^2_{||} + \Delta^2_{\perp} - \delta^2_{\perp})^2 + 4\Delta^2_{||}\delta^2_{\perp}}/2,$$

$$\varphi_{\lambda} = (1/2) \arctan \frac{2\Delta_{||} \delta_{||}}{\Delta_{||}^2 + \Delta_{\perp}^2 - \delta_{\perp}^2}.$$

In (1) and (2), α is the mean absorption coefficient, $\Delta_{||} = (2\pi d / \lambda_{||})\Delta n_{||}$ and $\Delta_{\perp} = (2\pi d / \lambda_{\perp})\Delta n_{\perp}$ are, the phase retardations due to the linear ($\Delta n_{||} = n_{||} - n_{\perp}$) and circular ($\Delta n_{\perp}$) birefringences, respectively, $\delta_{\perp} = (2\pi d / \lambda_{\perp})\Delta k_{\perp}$ is the analogous parameter of LD ($\Delta k_{\perp} = k_{\perp} - k_{\perp}$ with the dichroic absorption difference $\Delta \alpha = \alpha_{||} - \alpha_{\perp} = \alpha_{\perp} - \alpha_{||} = 2\delta_{||}/d$), and d is the crystal thickness.
If \(\Delta_i = 0 \), we have \(J_{\|} = \exp(-\alpha_{\|}d) \). For non-dichroic crystals \(\Delta = 0, \delta_i = 0 \),
\[
J_\perp = J_{\|} = e^{-\alpha d}.
\]

Let us now concentrate at the polarized transmittance anomalies just at the IP, where the total phase retardation is \(\Delta = \sqrt{\Delta_i^2 - \Delta_j^2} \). Consider the ideal situation, when \(\Delta_j, \delta_j, \) and \(\alpha \) manifest no dispersion and the birefringence near the IP behaves as \(\Delta t = \gamma(\lambda - \lambda_i) \). Let us label the “apparent” LD at the IP as \(\Delta \alpha_{\text{ab}} \) and the “true” LD (defined as if the IP does not exist – see Fig. 2) as \(\Delta \alpha_j = \Delta \alpha(\lambda_j) \). Using formulae (1) and (2) and the definition \(\Delta \alpha_{\text{ab}} = \ln[J_i(\lambda_i)/J_i(\lambda_j)]/d \), we get
\[
\Delta \alpha_{\text{ab}} \approx \Delta \alpha \sin \Delta
\]
in the practical case of a weak LD \(\delta_j << \Delta_j \). Formula (4) yields the inequality \(|\Delta \alpha_{\text{ab}}| \leq |\Delta t| \), a progressive decrease in \(\Delta \alpha_{\text{ab}} \) with increase in the sample thickness \(\Delta \approx d^{-1} \), and a rapidly achieved limit \(\Delta \alpha_{\text{ab}} \rightarrow 0 \) (i.e., touching the spectral curves \(J_i(\lambda_i) \) and \(J_i(\lambda_j) \) at the IP – see Fig. 2, the insert). Note that the “apparent” LD behavior according to (4) correlates well with the simple, though general, considerations about the spatial evolution of wave polarization and absorption owing to the wave coupling [3].

Quantitative verifications of formula (4) with the use of a large variety of experimental results (ZnO, CdS, CdSiP\(_2\), CdGa\(_2\)S\(_4\), AgGa\(_2\)S\(_4\), and AgGa\(_{0.98}\)In\(_{0.02}\)S\(_2\); crystals, various \(\Delta \) and \(d \), see, e.g., Fig. 1) testify to its validity. Some disagreement is present only for very thin AgGa\(_{0.98}\)In\(_{0.02}\)S\(_2\) samples [3]. They might likely originate from a non-zero azimuth \(\varphi \) (see [3]). Then relation (4) should be replaced with
\[
\Delta \alpha_{\text{ab}} \approx \Delta \alpha_{\text{ab}}^{\text{th}} \left[\frac{\sin \alpha \cos 2\varphi + (\Lambda_j/2) \sin^2(\Delta/2) \sin 2\varphi}{\sin \alpha \cos 2\varphi + (\Lambda_j/2) \sin^2(\Delta/2) \sin 2\varphi} \right],
\]
producing a notable “overlapping” effect for the curves \(\alpha_i(\lambda) \) and \(\alpha_j(\lambda) \).

Let us finally analyze the non-polarized anomaly \(\Delta \alpha_{\text{np}} \) at the IP detected in [2, 3]. Its value may be defined as \(\Delta \alpha_{\text{np}} = \alpha_{\text{np}} - \alpha_{\text{np}}^{(0)} \) (see Fig. 2). Using (1) and (2), along with the relations \(\alpha_{\text{np}}^{(0)} = -\ln J_{\text{np}}^0/d \) and \(\alpha_{\text{np}} = -\ln J_{\text{np}}/d \), we have
\[
\Delta \alpha_{\text{np}} \approx \frac{\alpha_{\text{np}}^2 d}{8} (1 - \sin^2 \frac{\Delta}{2})
\]
in case of \(\delta_j/\Delta << 1 \). Formula (6) suggests a positive \(\Delta \alpha_{\text{np}} \) for arbitrary crystal thicknesses \(\Delta \alpha_{\text{np}} > 0 \), the actual absence of the anomaly for thin crystals \(\Delta \alpha_{\text{np}} << \Delta_j \), and its rapid increase \(\propto \Delta_j^2 \) with increase in LD. All of these facts correlate well with the available experimental results [2, 3]. Moreover, we have a quite good quantitative agreement, e.g., \(\Delta \alpha_{\text{np}}^{\text{th}} = 12.8 \text{ cm}^{-1} \) and \(\Delta \alpha_{\text{np}}^\text{exp} \approx 14 \text{ cm}^{-1} \) [2], \(\Delta \alpha_{\text{np}}^{\text{th}} = 0.3 \text{ cm}^{-1} \) and \(\Delta \alpha_{\text{np}}^\text{exp} \approx 0 \text{ cm}^{-1} \) [3], where the superscripts “th” and “exp” mean, respectively, theoretical and experimental values. Formula (6) also predicts the evolution of the type of \(\lim d \rightarrow \infty \Delta \alpha_{\text{np}} = \Delta \alpha_{\text{np}}/2 \), in consonance with the data in [2, 3] for AgGa\(_2\)S\(_2\) and AgGa\(_{0.98}\)In\(_{0.02}\)S\(_2\) samples [3]. They might likely originate from a non-zero azimuth \(\varphi \) (see [3]). Then relation (4) should be replaced with
\[
\Delta \alpha_{\text{np}} \approx \Delta \alpha_{\text{np}}^{\text{th}} \left[\frac{\sin \alpha \cos 2\varphi + (\Lambda_j/2) \sin^2(\Delta/2) \sin 2\varphi}{\sin \alpha \cos 2\varphi + (\Lambda_j/2) \sin^2(\Delta/2) \sin 2\varphi} \right].
\]
AgGa$_{0.98}$In$_{0.02}$S$_2$ samples with the largest thicknesses ($\Delta\alpha_{\text{sp}}/\Delta\alpha_i \approx 0.42$ and 0.44, respectively).

The theory presented above enables one to explain the temperature evolution of $\Delta\alpha_{ob}$ and $\Delta\alpha_{np}$ for AgGaS$_2$ [3] (Fig. 1). At $T = 300$ K, we have $\Delta\alpha_{ob}^\text{exp} \approx 0$, $\Delta\alpha_{np}^\text{exp} \approx 0$, and $\Delta\alpha_{ob}^\text{th} = 0$ (since $\Delta \approx 2\pi$), $\Delta\alpha_{np}^\text{th} \approx 0.8$ cm$^{-1}$. The latter value can be hardly detectable in a real experiment. To describe changes in the absorption parameter with increase in the temperature ($\Delta\alpha_{ob}^\text{exp} \approx 15$ cm$^{-1}$ and $\Delta\alpha_{np}^\text{exp} \approx 11$ cm$^{-1}$ at $T = 460$ K), we have to account for the temperature variations of both the LD [$\Delta\kappa_i(\lambda_i)$ or $\Delta\alpha_i$] and the optical activity $\Delta\eta_i(\lambda_i)$. Extrapolating the corresponding literature data toward the high-temperature region, we obtain a rough estimation of the gyration at $T = 460$ K (~ 600 deg/mm). Then we have $\Delta\alpha_{ob}^\text{th} \approx 8$ cm$^{-1}$ and $\Delta\alpha_{np}^\text{th} \approx 13$ cm$^{-1}$, where the highest errors associated with calculations of the oscillating factor $\sin(\Delta/2)$ affect $\Delta\alpha_{np}^\text{th}$ much significantly than $\Delta\alpha_{ob}^\text{th}$. The agreement of theory and experiment should be regarded as a satisfactory one.

Thus, we have improved the theory of the propagation of electromagnetic waves in the crystals possessing the IP with regard for LD. The effect of LD on the spectral phenomena in the vicinity of the IP turns out to have a prominent character. We have explained quantitatively the anomalies at the IP for both the polarized and non-polarized optical transmittance spectra. The further consideration of the effects of LD will be a subject of a forthcoming paper.

References