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Abstract. By comparing the results of calculations concerning the dependence of the 
parameters of a layer on the growth conditions with and without regard for mechanical 
strains in the growing system, we have analyzed the influence of the elastic energy of the 
strained solid phase on the phase formation in the Cd–Hg–Te system. It is shown that the 
occurrence of elastic strains in a layer results in an insignificant reduction of the growth 
rate and has almost no influence on the composition of a growing layer. The ideas of 
coherently matched phases in the presence of elastic deformations in the system, as well 
as the assumption about the existence of the chemical equilibrium of phases on the inter-
face, give rather close results as for the crystallization of the material. Both approaches 
describe the experimental data on the growth of layers in various temperature-time 
regimes quite satisfactorily. 
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Cd–Hg–Te systems including solid-solution layers with 
thickness of several micrometers are widely used as 
materials for infrared detectors. They are obtained by the 
growing from the own melt on the substrate made of a 
binary compound (mostly it is cadmium telluride). In 
works [1, 2], the thermodynamic information allowing 
one to analyze the system’s phase diagram is 
theoretically obtained with high reliability. In [3, 4], the 
influence of the growth kinetics on the composition of 
layers is considered in terms of a diffusion-limited 
model. According to this model, the thermodynamic 
equilibrium was supposed to exist on the interface. Thus, 
the equations of phase equilibrium [1, 2] are valid for the 
concentrations of components on a growing surface, and 
the diffusion mass transfer problem can be posed. At the 
same time, the difference (although insignificant) 
between the crystal lattice constants of initial mixed 
compounds, CdTe and HgTe, occurs in the Cd–Hg–Te 
system. During the solid solution crystallization on the 
substrate from a binary compound, this factor is 
responsible for the occurrence of elastic strain fields in 
the growing system. Just this excess mixing energy 
component responds for the formation of misfit 
dislocations near the “substrate-layer” interface and it, 

probably, governs complex diffusion phenomena in the 
solid phase, by determining the shape of a hetero-
junction.  

Thus, it is possible to consider the grown epitaxial 
layer to be elastically strained, and the description of 
such crystallization process should involve the presence 
of the elastic energy in the system. This means that, in 
the description of the material growth kinetics, the 
boundary concentrations of components on the “strained 
solid phase–melt” interface should be connected by the 
coherent diagram equations [5, 6], instead of equations 
which take into account only the chemical phase 
equilibrium. 

Therefore, the purpose of the present work is to 
analyze the influence of a shift of phase equilibria due to 
the absent or incomplete relaxation of elastic strains in 
CdxHg1-xTe solid solutions on the heteroepitaxy kinetics 
for a layer grown from binary compounds on a substrate. 
In view of important practical applications of the posed 
problem, it is necessary to theoretically estimate the 
possibility to rule the strains in a heterojunction by 
changing the dependence of a composition of the layer 
on its thickness while obtaining the layers under noniso-
thermal conditions. 
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The equations of phase equilibria between the 
elastically strained solid phase and the own melt for 
ternary systems are obtained in [5, 6]. On their 
derivation, the thermodynamic functions describing the 
liquid phase were supposed to be the same as those in 
the description of general phase equilibria, whereas the 
calculation of component activities in the solid state was 
performed, by considering the existence of elastic strain 
fields occurring in a thin layer of the solid solution 
coherently matched with a massive substrate. For the 
Cd–Hg–Te system, these equations look as 
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where FF ST ∆,  − melting temperature and entropy of 
fusion of CdTe, HgTe compounds. “St” stands for the 
stoichiometric liquid phase, −iC  molar heat capacities 
of the initial elements of the liquid phase and ATe  
compounds; jγ , Sα  - the activity coefficient of the j-th 
component and the solid phase interaction parameter; 

Sj xx ,  – compositions of the solid solution and 
substrate; and B  – elastic constant of the solid solution 
dependent on the crystallographic orientation of a layer.  

It is known [5, 6] that the value of parameter B  for 
a (111)-oriented layer is a little more than the respective 
value for a (100)-oriented one. Taking into account that, 
in practice, (111)-oriented layers are grown more often 
and considering that, as a whole, the elastic energy 
contribution to the total energy balance of the solid 
phase is expected to be not so significant, the following 
calculations are carried out just for the latter layer 
orientation. Then, according to the data [5, 6] for (111)-
oriented layers of crystals with cubic symmetry, this 
parameter is the following combination of elastic 
constants: 
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Here, kmca,  – crystal lattice parameter of an 
unstrained solid solution and its elastic constants, and 

−AN  Avogadro number. 

Elastic constants, as well as the crystal lattice 
parameter for the current solid solution composition, 
were calculated by the method of linear interpolation, by 
using the data on the appropriate properties of initial 
binary compounds as the initial information. Data 
necessary for the calculation of the mentioned para-
meters are borrowed from work [7] and submitted in 
Table. 

 
Table. Elastic constants of CdTe and HgTe compounds at 
various temperatures [7]. 

 
Compound K,T  11C , 

GPa 
12C , 

GPa 
44C , 

GPa 

298 53.8 37.4 20.18 

CdTe  
77 56.2 39.4 20.61 
300 53.6 33.6 22.30 

HgTe  

77 58.7 40.5 21.10 
 
As follows from Table, the elastic constants of 

compounds are dependent on temperature. 
While the experimental data concerning these 

parameters are absent for the temperatures of growth, 
their values were corrected by diminution by 10 % 
relatively to respective ones for room temperature. Such 
a degree of correction corresponded to their reduction up 
to values at the typical temperatures of crystallization in 
the system. 

The thermodynamic functions needed to calculate 
the liquid phase parameters within the model of 
polyassociated solutions are taken from our works [1, 2].  

The shift of phase equilibria due to the presence of 
elastic strains in the multicomponent system is 
characterized by the contact supercooling which is 
defined as the difference between the liquidus 
temperature and the temperature of phase equilibrium 
between the strained solid phase and the melt of the 
same composition [5, 6]. The calculated values of 
contact supercooling on the solid solution growth on 
CdTe and HgTe (111)-oriented substrates, which are 
obtained by solving Eqs. (1), are shown in Fig. 1. As 
follows from these data, the contact supercooling for 
typical growth temperatures is not greater than 1 K. Such 
a result is not unexpected, taking into account the above-
mentioned properties of the solid solutions under study. 
Really, the direct calculations of the elastic component 
in Eq. (1) show that the contribution of external elastic 
strains into the solid-phase total energy is not greater 
than 10 % relative to the excess mixing energy of the 
solid phase (parameter Sα ). The last data concern the 
(111)-oriented layer growth. For (100)-oriented layers, 
the calculated contact supercooling is even less. 

The occurrence of elastic energy in the growing 
system results not only in a change of the phase 
equilibrium temperature, but also in a change of the 
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Fig. 1. Contact supercooling with solid solution composition 
at the liquidus temperature TL = 550 ºC for СdTe (1) and 
HgTe (2) (111)-oriented substrates. 

 

composition of the growing strained solid phase. This 
effect is known as the lattice-pulling effect [5]. The 
calculations of this effect with the use of the equations of 
the coherent diagram (1) have shown that the 
compositions of strained and equilibrium solid phases 
differ only in the third digit after a point, i.e. the 
considered effect is rather insignificant. Thus, the 
obtained data allow us to assume that the mechanical 
strains in a growing solid solution should result in an 
insignificant diminution of the growth rate of layers due 
to the contact supercooling at an insignificant change of 
the growing material’s composition relative to the 
composition predicted by the equilibrium phase diagram. 
Such a distinction in the characteristic curves of both 
coherent and equilibrium Cd–Hg–Te system’s phase 
diagrams should be taken into account in the growth 
kinetics analysis. 

To describe the growth kinetics of a ternary 
solution strained layer, we should solve the system of 
differential equations of diffusion. The assumption about 
a coherent match between the growing layer and the 
substrate should be taken as boundary conditions for 
them, instead of the assumption about the chemical 
equilibrium on the interface. In such a situation, the 
coherent diagram equations (1) are valid for the 
concentrations of components on the interface, while the 
equations of mass conservation remain constant [5, 8]. 
Thus, the mathematical description of the process of 
growth of the coherently matched epilayer and a massive 
substrate is given by the equations 
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Fig. 2. Layer thickness with square root of time for CdxHg1-xTe 
solid solution isothermal growth with x ≈ 2 mol. frac. without 
elastic strains taken into account (dashed curve) and with them 
(solid curve). Growth temperatures: 1 − 501; 2 − 503; 3 − 505, 
4 − 507 ºC. Liquidus temperature TL = 513 ºC. 

where 0
,isx , 0

ix  – concentrations of solid and liquid 
phase components on the interface, respectively, 
corresponding to the coherent diagram equations (1), 

z

x
D i
i ∂
∂

 − component fluxes nearby the surface 

boundary to the interface; −)(tV growth rate; −
ρ
ρ

l

s  

ratio of the solid- and liquid-phase molar densities; i = 
Cd, Hg – under the solid solution growth from a 
tellurium enriched liquid phase, z − coordinate directed 
deep into the melt. 

The mass transfer problem formulated in the 
mentioned way was solved by numerical methods both 
for isothermal growth conditions and for the layers 
grown by the equilibrium and supercooling techniques. 
In the last case, the process of growth was realized by 
the uniform cooling of a liquid phase supercooled by ∆T. 
So Fig. 2 shows the calculated and experimental data [9] 
on the solid-solution layer thickness grown on the CdTe 
(111)B substrate with isothermal growth time for 
different supercoolings and with mechanical strains, 
being taken into account or not. The partial diffusion 
coefficients necessary for the calculations were supposed 
to be independent of temperature in the considered 
interval and equal to: s/cm105.2 25

Hg
−⋅=D  and 

s/сm108.2 25
Cd

−⋅=D  [9]. As follows from the 
calculations, elastic strains and the contact supercooling 
in the system reduce the total liquid phase supercooling 
degree and slow down the material’s growth rate, which 
is reflected in a reduction of the layer thickness. 
However, in general, the influence of contact super-
cooling on the crystallization process is not significant. 
This means that the kinetic calculations carried out by 
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Fig. 3. CdxHg1−xTe layer thickness with x ≈ 0.8 mol. frac. 
versus growth time. Liquidus temperature Тl = 462 ºC. 1 – 
initial growth temperature Т = 455 ºC (∆Т = 7 ºC), cooling 
rate Vc = 0.25 ºC /min; 2 – Т = 456 ºC (∆Т = 8 ºC), Vc = 
0.54 ºC /min, 3 − Т = 452 ºC (∆Т = 10 ºC), Vc = 0.56 ºC /min, 
4 – Т = 450 ºC, (∆Т = 12 ºC), Vc =0.53 ºC /min. Experimental 
data [14]. 

 
 
Fig. 4. Solid solution composition versus layer thickness. Initial 
growth temperature Т = 552 ºC. Liquidus temperature Тl = 
= 555 ºC. Cooling rate Vc = 0.25 ºC/min. Experimental data [11]. 

 

using the phase equilibrium relations and the coherent 
ones as boundary conditions, give close results, and both 
these approaches describe the isothermal crystallization 
quite satisfactorily.  

Influence of mechanical strains must be the most 
essential while growing the layers of a variable compo-
sition. Layer composition changes in such a situation 
occur, first of all, due to a temperature decrease in the 
system. For the quantitative description of the layer 
growth at a temperature decrease in the system, the 
problem of diffusion was solved in such a way that, on 
each iterative step of integration, the growth temperature 
was reduced linearly with the given rate. The growth rate 
of a layer, its composition, and thickness at each time 
moment were obtained. The comparison of calculated 
and experimental results [10] for the thickness of layers 
grown by the supercooling technique at various degrees 
of supercooling and cooling rates is given in Fig. 3. 
Quite satisfactory conformity of the results of calcu-
lations to experimental data is observed. Such a result 
confirms the efficiency of the diffusion-limited model in 
the description of the solid solution LPE process, when 
the model of polyassociative solutions is used for the 
description of a phase equilibrium in the system. 

To estimate the influence of mechanical strains on 
the growth process, the comparative analysis of the 
results of calculations of the solid solution composition 
distribution in the cases where layers are grown under 
various time-temperature conditions both with and 
without the account of elastic energy in the total 
system’s energy balance should be carried out. Such data 

for a solid solution grown from the liquid phase with the 
composition xCd = 0.006 at. frac., xHg = 0.217 at. frac. at 
an initial supercooling of 2 ºC and various cooling rates 
are shown in Fig. 5. It is obvious from Fig. 5 that the 
results of calculations of the composition distribution 
carried out with and without account of mechanical 
strains differ poorly. The calculated dependences carried 
out with the coherent diagram application give some 
reduction of a composition gradient relatively to those 
calculated with the use of the phase equilibrium 
conditions. Naturally, these data reflect the well-known 
effect of solid solution composition pulling to a 
substrate’s one (lattice-pulling effect) [6]. However, in 
case of CdxHg1-xTe solid solution, for which the 
variation of a lattice constant with the composition 
change is very insignificant, this effect is noticed to be 
poor. We note that, with decrease in the initial growth 
temperature, the considered effect should be manifested 
less significantly. It is illustrated by the calculated data 
in Fig. 5 when the initial growth temperature is reduced 
down to 450 ºC. 

It is worth to note the observed satisfactory 
correlation between the calculated values of composition 
gradients over the layer’s thickness and the experimental 
data [13] and a little worse correspondence for the solid 
phase composition. 

We note that, under the typical growth conditions 
of an epitaxial layer in the considered system, the 
experimental data on the composition variation versus 
the layer thickness are close to linear. This means that, in 
the considered temperature intervals, the liquidus and 
solidus slopes of the system can be plotted as straight 
lines with high degree of accuracy, i.e., the linear model 
of diffusion growth earlier developed for the description 
of a similar process in systems of 53BA  solid solutions 
[6] can be also applied to this system of semiconductor 
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Fig. 5. CdxHg1-xTe solid solution composition versus layer 
thickness for the initial growth temperature T = 500 ºC, 
degree of supercooling ∆Т = 2 ºC, different cooling rates, and 
elastic strains taken or not into account: Vc = 0.2 ºC/min (1), 
0.4 (2), 0.6 (3). 

solid solutions. It is also necessary to note that the 
quantitative application of the diffusion-limited model 
with linear forms of the phase diagram surface will 
result inevitably in mathematical difficulties in 
calculations of the model’s characteristic parameters (for 

example, the partial liquidus slopes T
xi
∂

∂ ). The 

model’s software offered in this work has no such lacks. 
Thus, the achieved good correspondence of the 

results of calculations of the growth kinetics of 
CdxHg1−xTe solid solutions in various time-temperature 
regimes to experiments confirms the applicability of the 
diffusion-limited model to the description of the growth 
process of layers. The solution of the problem of growth 
under mechanical strains in the system shows that the 
elastic energy reduces the material’s growth rate by  
10 % on the average. Thus, a variation in the composition 
 

 of an elastically strained layer is insignificant and not 
greater than several percents in comparison with that 
predicted by the equilibrium phase diagram. 
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