Semiconductor Physics, Quantum Electronics and Optoelectronics, 11 (3) P. 303-306 (2008).
DOI:
https://doi.org/10.15407/spqeo11.03.303
References
1. R.W. Gerchberg and W.O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures // Optik 35, p. 237-246 (1972). | | 2. J.R. Fienup, Phase retrieval algorithms: a comparison // Appl. Opt. 21, p. 2758-2769 (1982). https://doi.org/10.1364/AO.21.002758 | | 3. J.R. Fienup, Iterative method applied to image reconstruction and to computer-generated holograms // Opt. Eng. 19, p. 297-305 (1980). https://doi.org/10.1117/12.7972513 | | 4. F. Wyrowski and O. Bryngdahl, Iterative Fourier transform algorithm applied to computer holography // J. Opt. Soc. Amer. A 5, p. 1058-1065 (1988). https://doi.org/10.1364/JOSAA.5.001058 | | 5. F. Wyrowski, Diffractive optical elements: iterative calculation of quantized, blazed phase structures // J. Opt. Soc. Amer. A 7, p. 961-969 (1990). https://doi.org/10.1364/JOSAA.7.000961 | | 6. G.-Z. Yang and B.-Y. Gu, Theory of the amplitudephase retrieval in any linear transform system and its applications // Intern. J. Mod. Phys. B 7, p. 3153-3224 (1993). https://doi.org/10.1142/S021797929300319X | | 7. O. Ripoll, V. Kettunen, and H. P. Herzig, Review of iterative Fourier transform algorithms for beam shaping applications // Opt. Eng. 43, p. 2549-2556 (2004). https://doi.org/10.1117/1.1804543 | | 8. M. Škeren, I. Richter, and P. Fiala, IterativeFourier-transform algorithm: comparizon of various approaches // J. Mod. Opt. 49, p. 1851- 1870 (2002). https://doi.org/10.1080/09500340210140542 | | 9. A.V. Kuzmenko, UA Patent No. 65295 (priority from 03.07.2003), Bull. 1 (16 January 2006). | | 10. A.V. Kuzmenko and P.V. Yezhov, Iterative algorithms for off-axis double-phase computergenerated holograms implemented with phase-only spatial light modulators // Appl. Opt. 46, p. 7392- 7400 (2007). https://doi.org/10.1364/AO.46.007392 | |
|
|