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Abstract. A new iterative Fourier transform method of synthesis of kinoforms is 
presented. Two object-depended filters (an amplitude filter and a phase one) are used in 
the object plane on the iterative calculation of a kinoform instead of a single (phase) filter 
as usual. The amplitude filter is a system of weight coefficients that vary in the process 
of iterations and control the amplitude of an input object. The advantages of the proposed 
method over other ones are confirmed by computer-based experiments. It is found that 
the method is most efficient for binary objects.  
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1. Introduction 

There exists a high number of iterative algorithms aimed 
at the solution of phase problems, including the problem 
of a kinoform. The majority of algorithms was 
developed on the basis of the so-called error-reduction 
(ER) algorithm [1]. It was refined in works by Fienup 
[2, 3] on solving the problems of star interferometry (a 
group of input-output algorithms). I mention also the 
subsequent works, e.g., by Wyrowski and Bryngdahl [4], 
Wyrowski [5], and Yang, Gu [6] in which the iterative 
algorithms were further improved. At the present time, 
all they form a family of the so-called iterative Fourier 
transform (IFT) algorithms. The comparative analysis of 
a number of algorithms from this family is available in 
some surveys (see, e.g., [7, 8]). 

It is known that processing the amplitude of a field 
(A-field) in the spectral plane is the same in all IFT 
algorithms of calculation of a kinoform. This operation 
is nonlinear and consists in the reduction of the A-field 
to unity. The algorithms differ from one another by a 
mean of processing the field in the object plane which 
depends on the final purpose, namely, on a function 
which should be realized by a kinoform (the beam 
splitting, beam shaping, image generation, and so on). It 
is worth to note that, despite the diversity of operations 
used in the object plane, all they, are linear (except the 
ER-algorithm). 

2. Algorithm 

In the present work, I give a modified ER-algorithm of 
calculation of a kinoform, whose main unique distinction 
from the classical ER-algorithm [1] consists in the use of 
a new nonlinear operation [9] of processing the A-field 

in the object plane. This operation in its complex-valued 
version was used earlier by us in the synthesis of double-
phase holograms [10]. To clarify its application, the 
work of the algorithm is illustrated in Fig. 1. First, one or 
several iterations (Ker) are realized by the classical ER-
scheme which requires no explanations. Then, in all 
iteration with k > Ker on the formation of an input, f will 
be replaced by a new function defined as 

kf = ,fkα     (1) 

where the weight coefficients kα  are determined by the 
recurrence relation 

11 −− βα=α kkk   ( 1>k ),  (2) 

)./( 11 ε+=β −− kk gf   (3) 
 
 

 
 
Fig. 1. Weighting IFT algorithm. 

 
Here, |gk–1| is the reconstructed amplitude on the 

(k–1)th iteration, and ε is a small number ~10-10, 
excluding the division by zero. It should be mentioned 
that f is real. Operations (1)-(3) are heuristic and have no 
strict mathematical justification. The physical sense of 
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the coefficients kα  becomes clear if the block of the 
algorithm separated by a dashed line in Fig. 1 is 
considered, according to Fienup [3] as a nonlinear unit 
with the input αfexp(iφ) output g, and action operator 
ℱ +1CF ℱ

-1. From the viewpoint of the theory of image-
processing system, the coefficients α is nothing but the 
collection of coefficients of a negative feedback “output-
input'”: if the amplitude |gk–1| on the (k–1)th iteration at 
some point (x′, y′) of the plane of images is more than a   
given value f, then, on the next kth iteration, the input f 
at the corresponding point (x, y) will be corrected. 
Namely, it will be decreased by αk times, and vice versa. 
At the same time, from the viewpoint of optics, the 
system of coefficients αk normalized to unity can be 
interpreted as some object-depended amplitude filter 
which acts on the initial object f and varies in the process 
of iterations. It is clear that, for all ER-iterations, α(x, y) 
= α0(x, y) = 1(x, y). 

3. Experiment 

A number of model experiments with various objects 
was realized with the purpose to study the potentialities 
of the method. For the sake of comparison, analogous 
experiments were also performed with the use of a 
kinoform version of the input-output (IO) algorithm by 
Fienup [3]. In all the cases, the same phase starting 
diffuser with a uniform distribution of phases in the 
interval 0-2π is used. The variance of the amplitudes of 
images reconstructed in the process of iterations was 
evaluated using the formula 
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is the scale factor, the indices l, m and i, j run over the 
points, where the amplitude of an initial object  f  is 
nonzero, and k is the iteration number. 

In the experiments involving the IO algorithm, the 
optimum value of the object-depended coefficient 
β = βopt in the equations for the input function (see Eqs 
(8) and (9) in Ref. [3]) is used by attaining the best 
behavior of the function σg(k) during iterations in all the 
cases. The value of βopt was determined by means of the 
cyclic repetition of the procedure of synthesis for various 
values of β (from the interval 0.1-5.0 with a step of 0.1). 

In Figs 2 to 4, the results of model experiments on 
the synthesis of the kinoforms of binary and halftone 
objects with a dimension of 64×64 counts are presented. 
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Fig. 2. Objects 64×64: (a) binary; (b), (c) halftone without and 
with a base (equal 0.17). 

3.1. Binary object 

In Fig. 3, the plots characterizing the quality of the 
image of a binary object (Fig. 2a) reconstructed by a 
kinoform are presented. As seen from Fig. 3a, the 
weighting algorithm allows one to decrease the dispersal 
of the one-bit-intensity ∆Ione-bits given by the ER-
algorithm practically to zero, i.e., the algorithm does not 
reveal the effect of stagnation relative to binary objects. 
In our example, 180 weighting-iterations reduce ∆Ione-bits 
from 0.008 to 7.6×10-7 (Fig. 3b), whereas 1500 such 
iterations result in ∆Ione-bits = 2×10-12. 
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Fig. 3. The kinoform of the binary object (Fig. 2a): (a) range of 
output intensities, (b) variance of amplitude of the 
reconstructed images vs iteration number. 
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At the same time, the IO algorithm (with optimized 
β) “stops” at the value ∆Ione-bits = 2.5×10-5. That is, it 
falls in a minimum of σg(k) which is quite deep, but, 
nevertheless, is local. As for the ratios of the minimum 
one-bits-intensity to the zero-bits intensity for three 
algorithms, they are equal, respectively, to 4 (ER), 4.53 
(IO), and 7 (weighting). Figure 3b demonstrates the 
effect of diminution of the variance σg(k) on the 
transition from one algorithm to another one. Analogous 
results were obtained also for other binary objects with 
dimensions of 64×64 and 128×128. 

3.2. Halftone object 

A somewhat more complicated situation is observed for 
halftone objects, one of which is presented in Fig. 2b. As 
was shown by model experiments, the kinoforms of such 
objects calculated with the help of the weighting 
algorithm reconstruct a high-quality image only in the 
range of amplitudes from ~0.15 to unity (on the 
normalization of the image to unity). The rest amplitudes 
are distorted to a variable degree. The proper 
reconstruction of all the amplitudes, including those 
close to zero, can be reached if the initial object is 
positioned on a pedestal (Fig. 2c) whose height is ~15-
20 % of its maximum amplitude and if the reconstructed 
image amplitude (the intensity in an optical experiment) 
is cut off by the pedestal level. It is obvious that, in this 
case, the useful diffraction efficiency of a kinoform 
decreases. The dependences of σg on the iterations for 
both compared algorithms given in Fig. 4 indicate that, 
in the case where a base is supplemented to an object, 
the weighting algorithm begins to surpass the IO 
algorithm after a certain number of iterations. In our 
example with the object in Fig. 2c, the advantage of the 
weighting algorithm begins to manifest itself after 90 
iterations (see Fig. 4), and is characterized almost by the 
six-order difference by the 1500th iteration (1×10-12 
against 9.5×10-6). But if the base is absent, the IO 
algorithm has some advantage. 
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Fig. 4. Variance of amplitude of the reconstructed images for 
halftone object without and with a base (Fig. 2b, c). 

The calculated efficiencies of kinoforms (in 
parentheses, the values obtained within the IO algorithm 
are given) are as follows: 91.39 (91.25) % for the object 
in Fig. 2a, 94.82 (92.48) % for the object in Fig. 2b, and 
96.91 (95.02) % for the object in Fig. 2c. 

In the course of calculations, the criticality of the 
weighting algorithm with respect to a value of the 
parameter ε in the formula (3) is verified. By varying ε 
from 1×10-22 to 1×10-6, the deviation of σg(ε) from 
σg(ε10) = 10-10 is determined by the formula 

∆σ = 100 % [σg(ε) – σg(ε10)]/σg(ε10)  

for various objects with the number of iterations equal to 
50. On the average, ∆σ was (0.002-0.05) %. Thus, the 
variation of ε in the indicated limits did not influence 
practically the exactness of the calculation of a kinoform 
and, at the same time, excluded the situation where one 
should divide the numerator in formula (3) by zero. 

3.3. Super-Gaussian (SG) beam shaping 

Within the weighting and IO algorithms, the calculations 
of kinoforms that are the transducers of the intensity of a 
Gauss beam of the form exp[–(x2 + y2)/2r0

2] in a SG 
beam of the form exp[–(x'2/2r0

'2)M – (y'2/2r0'2)M] are 
performed, where r0 and r0' are the inflection radii of the 
Gauss curves, and M is the SG order (as known, the 
calculation of a kinoform involves the square root of the 
both indicated intensities). In Fig. 5, the input (r0 = 70) 
and the output (r0' = 25) intensity profiles for M = 4 and 
M = 100 with a dimension of the object (kinoform) of 
256×256 counts are presented. The iteration process with 
Ker = 10 was truncated at the 100th iteration. With regard 
for the separation of the working part of a SG beam so as 
shown in Fig. 5, the intensity variance σI and the output 
efficiency η are as follows: σI = 2.9×10-4 (6.59×10-4), η = 
96.46 (89.72) % for M = 4; σI = 3.7×10-5 (1.98×10-4), η = 
93.63 (91.2) % for M = 100. The calculation of σI was 
performed by a formula analogous to (4), but for 
intensities. 
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Fig. 5. The profiles of intensities of super-Gaussian beams 
with r0' = 25 of the 4th and 100th orders obtained by 
calculations of the 256×256 kinoform within the weighting and 
IO algorithms. Curves for M = 4 and M = 100 are vertically 
shifted up for clarity. 
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Fig. 6. Proper (r0 = 70) and erroneous (r0 = 35) choices of the 
effective width of an illuminating beam on the calculation of 
the kinoform-former of a super-Gaussian (r0' = 25). In the 
second case, the cross-section of a super-Gaussian is covered 
by a speckle. 

 
I note that, in the calculation of a kinoform-former 

of a SG, a special attention should be paid to a choice of 
r0 defining the effective width of a beam illuminating the 
kinoform. For small r0, the kinoform is illuminated by a 
narrow Gauss beam, which means the actual 
nullification of light amplitudes on the edges of the 
kinoform. This is equivalent to a reduction of the band 
of space frequencies forming a SG. As a result, the 
pattern of a SG will be covered by a speckle irrespective 
of the value of r0' (see Fig. 6). In more details, the 
problem of restriction of the frequency band and its 
relation to the quality of images are considered in [4]. 

4. Conclusions 

Thus, the weighting algorithm has high efficiency in the 
synthesis of the kinoforms of binary objects. It is 
basically important that the effect of stagnation of the 
algorithm is absent in this case, i.e., the one-bits variance 
σg(k) in a reconstructed image tends to zero with 
increase in the number of iterations and the noise level 
(zero-bits) is the same as that of other algorithms or 
lower. The weighting algorithm is also efficient in 
calculations of kinoforms as the formers of SG laser 
beams. It must be emphasized that the weighting 
algorithm contains no parameters requiring the 
optimization (like β in the IO algorithm), which 
essentially accelerates the counting rate. However, it is 
expedient to apply this algorithm to halftone objects only 
in the case where the minimum amplitude of the 
normalized distribution of an object is ~0.15-0.20. 
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