Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (3) P. 309-314 (2009).
DOI: https://doi.org/10.15407/spqeo12.03.309


References

1. G. Barbero, D. Olivero, Ions and nematic surface energy: Beyong the exponential approximation for the electric field of ionic origin // Phys. Rev. E 65(3), 031701(2002).
https://doi.org/10.1103/PhysRevE.65.031701
2. A.V. Koval'chuk, Low-frequency spectroscopy as an investigation method of the electrode-liquid interface // Functional Materials 5(3), p. 426-430 (1998).
3. P. Kopčanský, M. Koneracká, V. Zavisova et al., Study of magnetic Fredericksz transition in ferronematics. Liquid crystals doped with fine magnetic particles // J. Phys. IV (Paris) 7, p. 565-566 (1997).
https://doi.org/10.1051/jp4:19971234
4. O. Buluy, E. Ouskova, Yu. Reznikov et al., Magnetically induced alignment of FNS // J. Magn. Magn. Mater. 252, p. 159-161 (2002).
https://doi.org/10.1016/S0304-8853(02)00618-2
5. P. Kopčanský, N. Tomašovičová, M. Koneracká et al., Structural changes in the 6CHBT liquid crystal doped with spherical, rodlike, and chainlike magnetic particles // Phys. Rev E 78(1), 011702 (2008).
https://doi.org/10.1103/PhysRevE.78.011702
6. P. Kopčanský, I. Potočova, M. Timko et al., The structural transitions in ferronematics in combined electric and magnetic fields // J. Magn. Magn. Mater. 272-276, p. 2355-2356 (2004).
https://doi.org/10.1016/j.jmmm.2003.12.411
7. P. Kopčanský, I. Potočova, M. Koneracká et al., The anchoring of nematic molecules on magnetic particles in some types of ferronematics // J. Magn. Magn. Mater. 289, p. 101-104 (2005).
https://doi.org/10.1016/j.jmmm.2004.11.030
8. P. Kopčanský, M. Koneracká, M. Timko et al., The structural transitions in ferronematics and ferronematic droplets //J. Magn. Magn. Mater. 300, p. 75-78 (2006).
https://doi.org/10.1016/j.jmmm.2005.10.036
9. N. Tomašovičová, M. Koneracká, P. Kopčanský et al., The structural phase transitions in 6CB-based ferronematics // Acta Phys. Pol. A 115(1), p. 336- 338 (2009).
https://doi.org/10.12693/APhysPolA.115.336
10. S.V. Burylov, Y.L. Raikher, Physics of ferronematics with soft particle anchoring // Braz. J. Phys. 25(2), p. 148-173 (1995).
11. V. Boichuk, S. Kucheev, J. Parka et al., Surfacemediated light-controlled Fredericksz transition in a nematic liquid crystal cell // J. Appl. Phys. 90(12), p. 5963-5967 (2001).
https://doi.org/10.1063/1.1418421
12. L.V. Mirantsev, Influence of substrate microrelief on the Fredericksz transition in a thin nematic cell // Phys. Rev. E 59(5), p. 5549-5555 (1999).
https://doi.org/10.1103/PhysRevE.59.5549
13. A.V. Koval'chuk, Relaxation processes and charge transport across liquid crystal-electrode interface // J. Phys.: Condens. Matter. 13(24), p. 10333- 10345(2001).
https://doi.org/10.1088/0953-8984/13/46/306
14. A.V. Koval'chuk Low-frequency dielectric relaxation at the tunnel charge transfer across the liquid/electrode interface // Functional Materials 8(4), p. 690-693 (2001).
15. R. Dabrowski, J. Dziaduszek, and T. Szczucinski // Mol. Cryst. Liquid Cryst. Lett. 102, p. 155 (1984).
https://doi.org/10.1080/01406568408072065
16. A.J. Twarowski, A.C. Albrecht, Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene // J. Chem. Phys. 20(5), p. 2255-2261 (1979).
https://doi.org/10.1063/1.437729
17. A.V. Koval'chuk, Low and infra-low dielectric spectroscopy liquid crystal-solid state interface. Sliding layers // Ukr. J. Phys. 41(10), p. 991-998 (1996).
18. O. Yaroshchuk, A. Kovalchuk, R. Kravchuk, The interfacial dipole-to-dipole interaction as a factor of polar anchoring in the cells with planar liquid crystal alignment // Mol. Cryst. Liquid Cryst. 438, p. 195-204 (2005).
https://doi.org/10.1080/15421400590958151
19. T. Gavrilko, O. Kovalchuk, V. Nazarenko et al., Orientational behaviour of a nematic liquid crystal filled with inorganic oxide nanoparticles // Ukr. J. Phys. 49(12), p. 1167-1173 (2004).