Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 3. P. 227-231.
DOI: https://doi.org/
10.15407/spqeo15.03.227



References

1. W.F. Kuhs, R. Nitsche, K. Scheunemann, The argyrodites - a new family of the tetrahedrally close-packed srtuctures. Mater. Res. Bull. 14, p. 24-248 (1979).
https://doi.org/10.1016/0025-5408(79)90125-9
 
2. A. Dziaugys, J. Banys, A. Kezionis, V. Samulionis, I. Studenyak, Conductivity investigations of Cu7GeS5I family fast-ion conductors. Solid State Ionics, 179, p. 168-171 (2008).
https://doi.org/10.1016/j.ssi.2007.12.093
 
3. I.P. Studenyak, M. Kranjec, Gy.Sh. Kovacs, I.D. Desnica-Frankovic, A.A. Molnar, V.V. Panko, V.Yu. Slivka, Electrical and optical absoprtion studies of Cu7GeS5I fast-ion conductor. J. Phys. Chem. Solids, 63, p. 267-271 (2002).
https://doi.org/10.1016/S0022-3697(01)00139-1
 
4. I.P. Studenyak, O.P. Kokhan, M. Kranjec, V.V. Bilanchuk, V.V. Panko, Influence of SnSe substitution on chemical and physical properties of superionic solid solutions. J. Phys. Chem. Solids, 68, p. 1881-1884 (2007).
https://doi.org/10.1016/j.jpcs.2007.05.015
 
5. I.P. Studenyak, V.V. Bilanchuk, O.P. Kokhan, Yu.M. Stasyuk, A.F. Orliukas, A. Kezionis, E. Kazakevicius, T. Salkus, Electrical conductivity, electrochemical and optical properties of Cu7GeS5I-Cu7GeSe5I superionic solid solutions. Lit. J. Phys. 49, p. 203-208 (2009).
https://doi.org/10.3952/lithjphys.49209
 
6. I.P. Studenyak, M. Kranjec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus, Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor. J. Phys. Chem. Solids, 70, p. 1478-1481 (2009).
https://doi.org/10.1016/j.jpcs.2009.09.003
 
7. I.P. Studenyak, M. Kranjec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, A. Kezionis, E. Kazakevicius, T. Salkus, Temperature and compositional behaviour of electrical conductivity and optical absorption edge in mixed superionic crystals. Solid State Ionics, 181, p. 1596-1600 (2010).
https://doi.org/10.1016/j.ssi.2010.09.021
 
8 I.P. Studenyak, O.P. Kokhan, M. Kranjec, M.I. Hrechyn, V.V. Panko, Crystal growth and phase interaction studies in Cu7GeS5I-Cu7SiS5I superionic system. J. Cryst. Growth, 306, p. 326-329 (2007).
https://doi.org/10.1016/j.jcrysgro.2007.05.029
 
9. A.F. Orliukas, A. Kessionis, and E. Kazakevikius, Impedance spectroscopy of solid electrolytes in the radio frequency range. Solid State Ionics, 176, p. 2037-2043 (2005).
https://doi.org/10.1016/j.ssi.2004.08.042
 
10. I.P. Studenyak, M. Kranjec, Gy.Sh. Kovacs, V.V. Panko, D.I. Desnica, A.G. Slivka, P.P. Guranich, The effect of temperature and pressure on the optical absorption edge in Cu6PS5X (X = Cl, Br, I) crystals. J. Phys. Chem. Solids, 60, p. 1897-1904 (1999).
https://doi.org/10.1016/S0022-3697(99)00220-6
 
11. F. Oswald, Zur mengenauigkeit bei der bestimmung der absorptionskonstanten von halbleitern im infraroten spektralbereich. Optik, 16, p. 527-537 (1959).
 
12. F. Urbach, The long-wavelength edge of photographic sensitivity and electronic absorption of solids. Phys. Rev. 92, p. 1324-1326 (1953).
https://doi.org/10.1103/PhysRev.92.1324
 
13. M.V. Kurik, Urbach rule (Review). Phys. Status Solidi (a), 8, p. 9-30 (1971).
https://doi.org/10.1002/pssa.2210080102
 
14. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje, Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 70, p. 3540-3542 (1997).
https://doi.org/10.1063/1.119226
 
15. Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson, Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 78, p. 1958-1963 (1995).
https://doi.org/10.1063/1.360167
 
16. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, p. 1480-1483 (1981).
https://doi.org/10.1103/PhysRevLett.47.1480
 
17. I.P. Studenyak, M. Kranjec, M.V. Kurik, Urbach rule and disordering processes in superionic conductors. J. Phys. Chem. Solids, 67, p. 807-817 (2006).
https://doi.org/10.1016/j.jpcs.2005.10.184