Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 3. P. 268-275.
References 1. S.J. Tans, A.R.M. Verschueren and C. Dekker. Nature, 393, p. 49 (1998).https://doi.org/10.1038/29954 2. R.T. Weitz, U. Zschieschang, F. Effenberger, H. Klauk, M. Burghard, and K. Kern. Nano Lett. 7, p. 22 (2007). https://doi.org/10.1021/nl061534m 3. C. Lu, L. An, Q. Fu, J. Liu, H. Zhang, and J. Murduck. Appl. Phys. Lett. 88, 133501 (2006). https://doi.org/10.1063/1.2190707 4. M.H. Yang, K.B.K. Teo, W.I. Milne and D.G. Hasko. Appl. Phys. Lett. 87, 253116 (2005). https://doi.org/10.1063/1.2149991 5. H.M. Manohara, E.W. Wong, E. Schlecht, B.D. Hunt and P.H. Siegel. Nano Lett. 5, p. 1469 (2005). https://doi.org/10.1021/nl050829h 6. S. Meng, P. Maragakis, C. Papaloukas and E. Kaxiras. Nano Lett. 7, p. 45 (2007). https://doi.org/10.1021/nl0619103 7. T. Durkop, S.A. Getty, E. Cobas and M.S. Fuhrer. Nano Lett. 4, p. 35 (2004). https://doi.org/10.1021/nl034841q 8. W.K. Jeong and Q. Jiang. Nanotechnology, 18, 095705 (2007). https://doi.org/10.1088/0957-4484/18/9/095705 9. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom and H. Dai. Phys. Rev. Lett. 92, 106804 (2004). https://doi.org/10.1103/PhysRevLett.92.106804 10. M.S. Dresselhaus, G. Dresselhaus and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Springer, Berlin, 2001. https://doi.org/10.1007/3-540-39947-X 11. S. Moon, S. Lee, W. Song, J.S. Lee, N. Kim, J. Kim and N. Park. Appl. Phys. Lett. 90, 092113 (2007). https://doi.org/10.1063/1.2709934 12. Y. Nosho, Y. Ohno, S. Kishimito and T. Mizutani. Nanotechnology, 17, p. 3412 (2006). https://doi.org/10.1088/0957-4484/17/14/011 13. X. Cui, M. Freitag, R. Martel, L. Brus and P. Avouris. Nano Lett. 3, p. 783 (2003). https://doi.org/10.1021/nl034193a 14. Y.C. Tseng, K. Phoa, D. Carlton and J. Bokor. Nano Lett. 6, p. 1364 (2006). https://doi.org/10.1021/nl060305x 15. B. Shen and K. Cho. Phys. Rev. B, 70, 233405 (2004). https://doi.org/10.1103/PhysRevB.70.233405 16. R.T. Tung. Phys. Rev. B, 64, 205310 (2001). https://doi.org/10.1103/PhysRevB.64.205310 17. Y. Xue and M.A. Ratner. Phys. Rev. B, 70, 205416 (2004). https://doi.org/10.1103/PhysRevB.70.205416 18. D. Jimenez, X. Cartoixa, E. Miranda, J. Sune, F.A. Chaves and S. Roche. Nanotechnology, 18, 025201 (2007). https://doi.org/10.1088/0957-4484/18/2/025201 19. W. Zhu and E. Kaxiras. Nano Lett. 6, p. 1415 (2006). https://doi.org/10.1021/nl0604311 20. S. Okada and A. Oshiyama. Phys. Rev. Lett. 95, 206804 (2005). https://doi.org/10.1103/PhysRevLett.95.206804 21. S. Dag, O. Gulseren, S. Ciraci and T. Yildirim. Appl. Phys. Lett. 83, p. 3180 (2003). https://doi.org/10.1063/1.1616662 22. C. Dekker. Phys. Today, 52, p. 22 (1999). https://doi.org/10.1063/1.882658 23. S. Tans, A.R.M. Verschueren, and C. Dekker. Nature (London), 393, p. 49 (1998). https://doi.org/10.1038/29954 24. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris. Appl. Phys. Lett. 73, p. 2447 (1998). https://doi.org/10.1063/1.122477 25. P.G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley. Science, 278, p. 100 (1997). https://doi.org/10.1126/science.278.5335.100 26. Z. Yao, H.W.C. Postma, L. Balents, and C. Dekker. Nature (London), 402, p. 273 (1999). https://doi.org/10.1038/46241 27. M. Fuhrer, J. Nygard, L. Shih, M. Foreo, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, and P.L. McEuen. Science, 288, p. 494 (2000). https://doi.org/10.1126/science.288.5465.494 28. J.W. Mintmire, B.I. Dunlap, and C.T. White. Phys. Rev. Lett. 68, p. 631 (1992). https://doi.org/10.1103/PhysRevLett.68.631 |