1. R.V. Aldridge, K. Davis, and M.
Holloway, An investigation of the effect of a magnetic field on the
forward characteristics of some silicon diodes at low temperatures. J.
Phys. D, 8(1), p. 64-68 (1975). https://doi.org/10.1088/0022-3727/8/1/014
2.
E. Simoen, B. Dierickx, L. Deferm, and C. Claeys, The behavior of
silicon p-n junction based devices at liquid helium temperatures. J.
Appl. Phys. 70(2), p. 1016-1024 (1991). https://doi.org/10.1063/1.349683
3.
B. Dierickx, L. Warmerdam, E. Simoen, J. Wermeiren, and C. Claeys,
Model for hysteresis and kink behavior of MOS transistors operating at
4.2 K. IEEE Trans. ED-35(7), p. 1120-1125 (1988).
4. R.
Richter, A. Kittel, G. Heinz, G. Flatgen, J. Peinke, and J. Parisi,
Type-I intermittency in semiconductor breakdown: An experimental
confirmation. Phys. Rev. B, 49(13), p. 8738-8746 (1994). https://doi.org/10.1103/PhysRevB.49.8738
5.
J. Spangler, U. Margull, and W. Prettl, Regular and chaotic current
oscillations in n-type GaAs in transverse and longitudinal magnetic
fields. Phys. Rev. B, 45(20), p. 12137-12140 (1992). https://doi.org/10.1103/PhysRevB.45.12137
6.
S-Y.T. Tzeng and Y. Tzeng, Two-level model of longitudinal magnetic
field-induced current instability and chaos in n-GaAs. Phys. Rev. B,
72, 205201(1-7), (2005).
7. K. Aoki, T. Kondo, and T.
Watanabe, Cross-over instability and chaos of hysteretic I-V curve
during impurity avalanche breakdown in n-GaAs under longitudinal
magnetic field. Solid State Communs. 77(1), p. 91-94 (1991). https://doi.org/10.1016/0038-1098(91)90434-W
8.
V.A. Samuilov, V.K. Ksenevich, G. Remenyi, G. Kiss, and B. Podor,
Impact ionization breakdown of n-GaAs in high magnetic field. Semicond.
Sci. Technol. 14(12), p. 1084-1087 (1999). https://doi.org/10.1088/0268-1242/14/12/313
9.
R.J. Phelan and W.F. Love, Negative resistance and impact ionization
impurities in n-type indium antimonide. Phys. Rev. 133(4A), p.
A1134-A1137 (1964). https://doi.org/10.1103/PhysRev.133.A1134
10.
T.O. Poehler and J.R. Apel, Impurity ionization in germanium in strong
magnetic fields. Phys. Rev. B, 1(8), p. 3240-3244 (1970). https://doi.org/10.1103/PhysRevB.1.3240
11.
V.L. Borblik, Yu.M. Shwarts, M.M. Shwarts, A new method of extraction
of a p-n diode series resistance from I-V characteristics and its
application to analysis of low-temperature conduction of the diode
base. Semiconductor Physics, Quantum Electronics & Optoelectronics,
12(3), p. 339-342 (2009).
12. V.L. Borblik, Yu.M. Shwarts,
M.M. Shwarts, and A.M. Fonkich, Concerning the nature of relaxation
oscillations in silicon diodes in the cryogenic temperature region.
Cryogenics. 50(6-7), p. 417-420 (2010). https://doi.org/10.1016/j.cryogenics.2010.04.002
13.
B. Dierickx, E. Simoen, and G. Declerck, Transient response of silicon
devices at 4.2 K: I. Theory. Semicond. Sci. Technol. 6(9), p. 896-904
(1991). https://doi.org/10.1088/0268-1242/6/9/011
15.
O. Beckman, E. Hanamura, and L.J. Neuringer, Quantum limit
galvanomagnetic phenomena in n-InSb. Phys. Rev. Lett. 18(19), p.
773-775 (1967). https://doi.org/10.1103/PhysRevLett.18.773
16. L.A. Kaufman and L.J. Neuringer, Magnetic freeze-out and band tailing in n-InAs. Phys. Rev. B, 2(6), p. 1840-1846 (1970). https://doi.org/10.1103/PhysRevB.2.1840
18. B.I. Shklovskii and A.L. Efros, The Electronic Properties of Doped Semiconductors. Nauka, Moscow, 1979 (in Russian).
19.
F. Merlet, B. Pajot, Ph. Arcas, and A.M. Jean-Louis, Experimental study
of the Zeeman splitting of boron levels in silicon. Phys. Rev. B,
12(8), p. 3297-3317 (1975). https://doi.org/10.1103/PhysRevB.12.3297