Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 3. P. 288-293.
DOI: https://doi.org/
10.15407/spqeo15.03.288



References

1. R.V. Aldridge, K. Davis, and M. Holloway, An investigation of the effect of a magnetic field on the forward characteristics of some silicon diodes at low temperatures. J. Phys. D, 8(1), p. 64-68 (1975).
https://doi.org/10.1088/0022-3727/8/1/014
 
2. E. Simoen, B. Dierickx, L. Deferm, and C. Claeys, The behavior of silicon p-n junction based devices at liquid helium temperatures. J. Appl. Phys. 70(2), p. 1016-1024 (1991).
https://doi.org/10.1063/1.349683
 
3. B. Dierickx, L. Warmerdam, E. Simoen, J. Wermeiren, and C. Claeys, Model for hysteresis and kink behavior of MOS transistors operating at 4.2 K. IEEE Trans. ED-35(7), p. 1120-1125 (1988).
 
4. R. Richter, A. Kittel, G. Heinz, G. Flatgen, J. Peinke, and J. Parisi, Type-I intermittency in semiconductor breakdown: An experimental confirmation. Phys. Rev. B, 49(13), p. 8738-8746 (1994).
https://doi.org/10.1103/PhysRevB.49.8738
 
5. J. Spangler, U. Margull, and W. Prettl, Regular and chaotic current oscillations in n-type GaAs in transverse and longitudinal magnetic fields. Phys. Rev. B, 45(20), p. 12137-12140 (1992).
https://doi.org/10.1103/PhysRevB.45.12137
 
6. S-Y.T. Tzeng and Y. Tzeng, Two-level model of longitudinal magnetic field-induced current instability and chaos in n-GaAs. Phys. Rev. B, 72, 205201(1-7), (2005).
 
7. K. Aoki, T. Kondo, and T. Watanabe, Cross-over instability and chaos of hysteretic I-V curve during impurity avalanche breakdown in n-GaAs under longitudinal magnetic field. Solid State Communs. 77(1), p. 91-94 (1991).
https://doi.org/10.1016/0038-1098(91)90434-W
 
8. V.A. Samuilov, V.K. Ksenevich, G. Remenyi, G. Kiss, and B. Podor, Impact ionization breakdown of n-GaAs in high magnetic field. Semicond. Sci. Technol. 14(12), p. 1084-1087 (1999).
https://doi.org/10.1088/0268-1242/14/12/313
 
9. R.J. Phelan and W.F. Love, Negative resistance and impact ionization impurities in n-type indium antimonide. Phys. Rev. 133(4A), p. A1134-A1137 (1964).
https://doi.org/10.1103/PhysRev.133.A1134
 
10. T.O. Poehler and J.R. Apel, Impurity ionization in germanium in strong magnetic fields. Phys. Rev. B, 1(8), p. 3240-3244 (1970).
https://doi.org/10.1103/PhysRevB.1.3240
 
11. V.L. Borblik, Yu.M. Shwarts, M.M. Shwarts, A new method of extraction of a p-n diode series resistance from I-V characteristics and its application to analysis of low-temperature conduction of the diode base. Semiconductor Physics, Quantum Electronics & Optoelectronics, 12(3), p. 339-342 (2009).
 
12. V.L. Borblik, Yu.M. Shwarts, M.M. Shwarts, and A.M. Fonkich, Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region. Cryogenics. 50(6-7), p. 417-420 (2010).
https://doi.org/10.1016/j.cryogenics.2010.04.002
 
13. B. Dierickx, E. Simoen, and G. Declerck, Transient response of silicon devices at 4.2 K: I. Theory. Semicond. Sci. Technol. 6(9), p. 896-904 (1991).
https://doi.org/10.1088/0268-1242/6/9/011
 
14. D.M. Larsen, Shallow donor levels of InSb in a magnetic field. J. Phys. Chem. Sol. 29(2), p. 271-280 (1968).
https://doi.org/10.1016/0022-3697(68)90071-1
 
15. O. Beckman, E. Hanamura, and L.J. Neuringer, Quantum limit galvanomagnetic phenomena in n-InSb. Phys. Rev. Lett. 18(19), p. 773-775 (1967).
https://doi.org/10.1103/PhysRevLett.18.773
 
16. L.A. Kaufman and L.J. Neuringer, Magnetic freeze-out and band tailing in n-InAs. Phys. Rev. B, 2(6), p. 1840-1846 (1970).
https://doi.org/10.1103/PhysRevB.2.1840
 
17. T.O. Poehler, Magnetic freeze-out and impact ionization in GaAs. Phys. Rev. B, 4(4), p. 1223-1229 (1971).
https://doi.org/10.1103/PhysRevB.4.1223
 
18. B.I. Shklovskii and A.L. Efros, The Electronic Properties of Doped Semiconductors. Nauka, Moscow, 1979 (in Russian).
 
19. F. Merlet, B. Pajot, Ph. Arcas, and A.M. Jean-Louis, Experimental study of the Zeeman splitting of boron levels in silicon. Phys. Rev. B, 12(8), p. 3297-3317 (1975).
https://doi.org/10.1103/PhysRevB.12.3297