Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 3. P. 227-239.
DOI: https://doi.org/10.15407/spqeo16.03.227


References

1.    N.C. Bigall, W.J. Parak, and D. Dorfs, Fluorescent, magnetic and plasmonic – Hybrid multifunctional colloidal nano objects. Nano Today 7(4), p. 282-296 (2012).
https://doi.org/10.1016/j.nantod.2012.06.007
 
2.    G. Sun and J.B. Khurgin, Plasmon enhancement of luminescence by metal nanoparticles. IEEE J. Selected Topics in Quantum Electronics, 17 (1), p. 110-117 (2011).
https://doi.org/10.1109/JSTQE.2010.2047249
 
3.    A.O. Govorov, G.W. Bryant, W. Zhang, T. Skeini et al., Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett. 6(5), p. 984-994 (2006).
https://doi.org/10.1021/nl0602140
 
4.    J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao and A.O. Govorov, Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects. Phys. Rev. B, 77(16), 165301 (2008).
https://doi.org/10.1103/PhysRevB.77.165301
 
5.    S.M. Sadeghi, Control of energy dissipation in nanoparticle optical devices: Nearly loss-free switching and modulation. J. Nanopart. Res. 14(10), p. 1184 (2012).
https://doi.org/10.1007/s11051-012-1184-y
 
6.    R.D. Artuso and G.W. Bryant, Hybrid quantum dot-metal nanoparticle systems: Connecting the dots. Acta Phys. Pol. 122 (2), p. 289-293 (2012).
https://doi.org/10.12693/APhysPolA.122.289
 
7.    H. Mertens, A.F. Koenderink, and A. Polman, Plasmon-enhanced luminescence near noble-metalnanospheres: Comparison of exact theory and an improved Gersten and Nitzan model. Phys. Rev. B, 76(11), 115123 (2007).
https://doi.org/10.1103/PhysRevB.76.115123
 
8.    R. Knox, The Theory of Excitons. Academic Press, N.Y., 1963.
 
9.    S.I. Pekar, The theory of electromagnetic waves in a crystal with excitons. Sov. Phys. JETP, 6, p. 785-796 (1958).
https://doi.org/10.1016/0022-3697(58)90127-6
 
10.    S.I. Pekar, Dispersion of light in the exciton absorption region of crystals. Sov. Phys. JETP, 7, p. 813-822 (1958).
 
11.    V.V. Klimov, Nanoplasmonics: Fundamentals and Applications. PanStanford Publishing, Singapore, 2012; V.V. Klimov, Nanoplasmonics. Moscow, Fizmatlit Publ. House, 2009 (in Russian).
 
12.    J.D. Jackson, Classical Electrodynamics. John Wiley & Sons inc., N.Y.-London, 1962.
 
13.    J.A. Stratton, Electromagnetic Theory. McGraw-Hill Book Company, N.Y.-London, 1941.
 
14.    R. Ruppin, Decay of an excited molecule near a small metal sphere. J. Chem. Phys. 76(4), p. 1681-1684 (1982).
https://doi.org/10.1063/1.443196
 
15.    O. Madelung, Semiconductors other than Group IV Elements and III-V Compounds. Springer-Verlag, N.Y., 1992.
 
16.    Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B, 54(7), p. 4843-4856 (1996).
https://doi.org/10.1103/PhysRevB.54.4843
 
17.    V.V. Datsyuk and O.M. Tovkach, Optical properties of a metal nanosphere with spatially dispersive permittivity. J. Opt. Soc. Am. B, 28 (5), p. 1224-1230 (2011);
https://doi.org/10.1364/JOSAB.28.001224
 
V.V. Datsyuk, A generalization of the Mie theory for a sphere with spatially dispersive permittivity. Ukr. J. Phys. 56 (2), p. 122-130 (2011).