Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 3. P. 253-258.
DOI: https://doi.org/10.15407/spqeo16.03.253


References

1.    J. Fergason, Polymer encapsulated nematic liquid crystals for display and light control applications. SID Intern. Symp. Digest. Tech. Papers, No.16, p. 68 (1985).
 
2.    J.W.Doane, N.A.Vaz, B.-G.Wu, S. Zumer, Field controlled light scattering from nematic micro¬droplets. Appl. Phys. Lett. 48(4), p. 269-271 (1986).
https://doi.org/10.1063/1.96577
 
3.    A.V. Kovalchuk, M.V. Kurik, O.D. Lavrentovich, Encapsulated nematic liquid crystals: A new class of display units. Zarubezhnaia radioelektronika, N5, p. 44-58 (1989), in Russian.
 
4.    H. Stark, Physics of colloidal dispersions in nematic liquid crystals. Phys. Repts. 351(6), p. 387-474 (2001).
https://doi.org/10.1016/S0370-1573(00)00144-7
 
5.    P. Kopčanský, M. Koneracká, V. Zavisova et al. Study of magnetic Fredericksz transition in ferronematics. Liquid crystals doped with fine magnetic particles. J. Phys. IV (Paris), 7, p. C1-565-C1-566 (1997).
 
6.    O. Buluy, E. Ouskova, Yu. Reznikov et al., Magnetically induced alignment of FNS. J. Magn. Magn.Mater. 252, p. 159-161(2002).
https://doi.org/10.1016/S0304-8853(02)00618-2
 
7.    P. Kopčanský, N. Tomašovičová, M. Koneracká et al., Structural changes in the 6CHBT liquid crystal doped with spherical, rodlike, and chainlike magnetic particles. Phys. Rev. E, 78(1), 011702 (2008).
https://doi.org/10.1103/PhysRevE.78.011702
 
8.    P. Kopcansky, M. Timko, Z. Mitrova, V. Zavisova, M. Koneracka, N. Tomasovicova, L. Tomco, O.P. Gornitska, O.V. Kovalchuk, V.M. Bykov, T.M. Kovalchuk, I.P. Studenyak, Morphology and dielectric properties of polymer dispersed liquid crystal with magnetic nanoparticles. Semiconductor Physics, Quantum Electronics and Optoelectronics, 13(4), p. 343-347 (2010).
 
9.    A.J. Twarowski, A.C. Albrecht, Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 20(5), p. 2255-2261(1979).
https://doi.org/10.1063/1.437729
 
10.    A.V. Koval'chuk, Low- and infralow dielectric spectroscopy liquid crystal – solid state interface. Sliding layers. Ukr. J.Phys. 41(10), p. 991-998 (1996).
 
11.    A.V. Koval'chuk, Generation of charge carrier and formation of antisymmetric double electric layers in glycerine. J. Chem. Phys. 108(19), p. 8190-8194 (1998).
https://doi.org/10.1063/1.476174
 
12.    A.V. Koval'chuk, Relaxation processes and charge transport across liquid crystal – electrode interface. J. Phys.: Condens. Matter, 13(24), p. 10333-10345 (2001).
https://doi.org/10.1088/0953-8984/13/46/306