Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 3. P. 273-279.
References 1. I.S. Gorban and G.N. Mishinova, The bases of luminescent diagnostic of dislocation structure of SiC crystals// Proc. SPIE, 3359, p. 187 (1998).https://doi.org/10.1117/12.306212 2. A. Galeckas, H.K. Nielsen, J. Linnros, A. Hallen, B.G. Svensson, and P. Pirouz, Investigation of stacking fault formation in hydrogen bombarded 4H-SiC. Mater. Sci. Forum, 483-485, p. 327-330 (2005). https://doi.org/10.4028/www.scientific.net/MSF.483-485.327 3. S.I. Maximenko, P. Pirouz, and T. Sudarshan, Investigation of the electrical activity of partial dislocations in SiC p-i-n diodes. Appl. Phys. Lett. 87(3), 033503-0-033503-3 (2005). 4. A. Galeckas, and J. Linnros, P. Pirouz, Recombination induced stacking faults: Evidence for a general mechanism in hexagonal SiC. Phys. Rev. Lett. 96(2), 025502-1-025502-4 (2006). https://doi.org/10.1103/PhysRevLett.96.025502 5. S.I. Maximenko, P. Pirouz and T.S. Sudarshan, Open core dislocations and surface energy of SiC. Mater. Sci. Forum, 527-529, p. 439-442 (2006). https://doi.org/10.4028/www.scientific.net/MSF.527-529.439 6. P. Pirouz, M. Zhang, H.McD. Hobgood, M. Lancin, J. Douin, and B. Pichaud, Nitrogen doping and multiplicity of stacking faults in SiC. Phil. Mag. A, 86 (29-31), p. 4685-4697 (2006). https://doi.org/10.1080/14786430600724470 7. G. Regula, M. Lancin, H. Idrissi, B. Pichaud and J. Douin, Structural characterization of double stacking faults induced by cantilever bending in nitrogen-doped 4H-SiC. J. Appl. Phys. 101(11), p. 113533.1-113533.5 (2007). 8. G.R. Fisher, P. Barnes, Toward a unified view of polytypism in silicon carbide. Phil. Mag. B, 61(2), p. 217-236 (1990). https://doi.org/10.1080/13642819008205522 9. S.I. Vlaskina, D.H. Shin, 6H to 3C polytype transformation in silicon carbide. Jpn. J. Appl. Phys. 38, p. L27-L29 (1999). https://doi.org/10.1143/JJAP.38.L27 10. Shin Sugiyama, Motohiro Togaya, Phase relationship between 3C- and 6H-silicon carbide at high pressure and high temperature. J. Amer. Ceram. Soc. 84 (12), p. 3013-3016 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01129.x 11. S.I. Vlaskina. Semiconductor Physics, Quantum Electronics and Optoelectronics, 5(2), p. 252 (2002). 12. M. Durandurdu, Ab initio simulations of the structural phase transformation of 2H-SiC at high pressure. Phys. Rev. B, 75, p. 235204 (2007). https://doi.org/10.1103/PhysRevB.75.235204 13. S.W. Lee, S.I. Vlaskina, V.I. Vlaskin, I.V. Zaharchenko, V.A. Gubanov, G.N. Mishinova, G.S. Svechnikov, V.E. Rodionov, S.A. Podlasov, Silicon carbide defects and luminescence centers in current heated 6H-SiC. Semiconductor Physics, Quantum Electronics and Optoelectronics, 13(1), p. 24-29 (2010). 14. C. Raffy, J. Furthmuller, F. Bechstedt, Properties of interfaces between cubic and hexagonal polytypes of silicon carbide. J. Phys.: Condens. Matter, 14(48), p. 12725-12731 (2002). https://doi.org/10.1088/0953-8984/14/48/309 15. A. Romano, J. Li, S. Yip, Atomistic simulation of rapid compression of fractured silicon carbide. J. Nucl. Mater. 352, p. 22-28 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.038 16. F. Shimojo, I. Ebbsjo, R.K. Kalia, A. Nakano, J.P. Rino, and P. Vashishta, Molecular-dynamics simulation of structural transformation in silicon carbide under pressure. Phys. Rev. Lett. 84, p. 3338-3341 (2000). https://doi.org/10.1103/PhysRevLett.84.3338 17. F. Bechstedt, P. Kackell. Phys. Rev. Lett. 75, p. 2180 (1995). https://doi.org/10.1103/PhysRevLett.75.2180 18. J.Q. Liu, M. Skowronski, C. Hallin, R. Soderholm and H. Lendenmann, Structure of recombination-induced stacking faults in high voltage SiC p-n junctions. Appl. Phys. Lett. 80, p. 749 (2002). https://doi.org/10.1063/1.1446212 19. M.S. Miao, S. Limpijumnong and W.R. Lambrecht, Stacking fault band structure in 4H SiC and its impact on electronic devices. Appl. Phys. Lett. 79, p. 4360-4362 (2001). https://doi.org/10.1063/1.1427749 20. S. Juillaguet, T. Robert, J. Camassel Optical investigation of stacking faults in 4H-SiC epitaxial layers: Comparison of 3C and 8H polytypes. Mater. Sci. Eng. B – Solid State Mater. Adv. Technol., 165, p. 5-8 (2009). 21. A. Bauer, P. Reischauer, J. Kräusslich, N. Schell, W. Matz and K. Goetz, Structure refinement of the silicon carbide polytypes 4H and 6H: unambiguous determination of the refinement parameters. Acta Cryst. A, 57, p. 60-67 (2001). https://doi.org/10.1107/S0108767300012915 22. B. Wen, J. Zhao, M. Bucknum, P. Yao, T. Li, First principles studies of diamond polytypes. Diamond Relat. Mater. 17, p. 356-364 (2008). https://doi.org/10.1016/j.diamond.2008.01.020 23. F. Herman, J.P. van Duke, R.L. Kortum, Electronic structure and spectrum of silicon carbide. Mater. Res. Bull. 4, p. S167-S178 (1969). https://doi.org/10.1016/b978-0-08-006768-1.50020-6 24. S. Shinozaki, K.R. Kisman, Aspects of "one dimensional disorder" in silicon carbide. J. Acta Metallurgica, 26, p. 769-776 (1978). https://doi.org/10.1016/0001-6160(78)90027-5 25. L.U. Ogbuji, T.E. Mitchell, A.H. Heuer, The b®a transformation in polycrystalline SiC. J. Amer. Ceram. Soc. 64(12), p. 91-99 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb09583.x 26. Kazuaki Kobayashi, Shojiro Komatsu, First-principles study of 8H-, 10H-, 12H-, and 18H-SiC polytypes. J. Phys. Soc. Jpn. Appl. 024714 (2012). |