Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 3. P. 243-251.
https://doi.org/10.15407/spqeo17.03.243


                                                                 

References

1. R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors. Defect Studies. Springer-Verlag, Berlin-Heidelberg-New York, 1999.
https://doi.org/10.1007/978-3-662-03893-2
 
2. Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Application of Positron and Positronium Chemistry. World Sci. Publ. Co. Pte. Ltd., New Jersy-London-Singapore-Hong Kong, 2003.
 
3. O. Shpotyuk, J. Filipecki, Free Volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study. Ed. WSP, Czestochowa, 2003.
 
4. M. Hyla, J. Filipecki, O. Shpotyuk, M. Popescu, V. Balitska, Stoichiometric arsenic sulphoselenides as testing probes for positron trapping in chalcogenide glasses . J. Optoelectron. Adv. Mat. 9, p. 3177-3181 (2007).
 
5. O.I. Shpotyuk, J. Filipecki, V.O. Balitska, Radiation-induced extended free-volume defects in mixed ternary Ge-As/Sb-S glasses studied with PALS technique . J. Optoelectron. Adv. Mat. 10, p. 3193-3197 (2008).
 
6. O. Shpotyuk, J. Filipecki, M. Hyla, A. Ingram, Critical comments on speculations with open and closed "free volume defects ... in ion-conducting Ag/AgI-As2S3 glasses..." . Solid State Ionics, 208, p. 1-3 (2012).
https://doi.org/10.1016/j.ssi.2011.11.030
 
7. V. Balitska, Ya. Shpotyuk, J. Filipecki, O. Shpotyuk, M. Iovu, Post-irradiation relaxation in vitreous arsenic/antimony trisulphides . J. Non-Cryst. Sol. 357, p. 487-489 (2011).
 
8. A. Ingram, R. Golovchak, M. Kostrzewa, S. Wacke, M. Shpotyuk, O. Shpotyuk, Compositional depen-dences of average positron lifetime in binary As-S/Se glasses . Phys. B, 407, p. 652-655 (2012).
https://doi.org/10.1016/j.physb.2011.11.052
 
9. O. Shpotyuk, R. Golovchak, A. Ingram, V. Boyko, L. Shpotyuk Comparative study of extended free-volume defects in As- and Ge-based glassy semiconductors: theoretical prediction and experimental probing with PAL technique . Phys. Status Solidi (C), 10, p. 117-120 (2013).
https://doi.org/10.1002/pssc.201200405
 
10. R. Golovchak, A. Ingram, S. Kozyukhin, O. Shpotyuk, Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy . J. Non-Cryst. Solids, 377, p. 49-53 (2013).
https://doi.org/10.1016/j.jnoncrysol.2013.01.039
 
11. A. Feltz, Amorphous and Vitreous Inorganic Solids. Mir, Moscow, 1986.
 
12. X.H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, J. Lucas, Glasses for seeing beyond visible . Chem. Eur. J. 14, p. 432-442 (2008).
https://doi.org/10.1002/chem.200700993
 
13. B.J. Eggleton, Chalcogenide photonics: fabrication, devices, and applications . Opt. Express, 18, p. 26632-26634 (2010).
https://doi.org/10.1364/OE.18.026632
 
14. A. Zakery, S.R. Elliott, Optical Non-linearities in Chalcogenide Glasses and Their Applications. Springer-Verlag, Berlin-Heidelberg, 2007.
 
15. A.B. Seddon, Z. Tabg, D. Furniss, S. Sujecki, T.M. Benson, Progress in rare-doped mid-infrared fiber lasers . Opt. Express, 18, p. 26704-26719 (2010).
https://doi.org/10.1364/OE.18.026704
 
16. K.S. Liao, H. Chen, S. Awad, J.P. Yuan, W.S. Hung, K.R. Lee, J.Y. Lai, C.C. Hu, Y.C. Jean, Determination of free-volume properties in polymer without orthopositronium components in positron annihilation lifetime spectroscopy . Macromolecules, 44, p. 6818-6826 (2011).
https://doi.org/10.1021/ma201324k
 
17. Q. Deng, C.S. Sundar, Y.C. Jean, Pressure dependence of free-volume hole properties in an epoxy polymer . J. Phys. Chem. 96, p. 492-495 (1992).
https://doi.org/10.1021/j100180a088
 
18. Q. Deng, Y.C. Jean, Free-volume distributions of an epoxy polymer probed by positron annihilation: pressure dependence . Macromolecules, 26, p. 30-34 (1993).
https://doi.org/10.1021/ma00053a005
 
19. Q. Deng, F. Zandiehnadem, Y.C. Jean, Free-volume distributions of an epoxy polymer probed by positron annihilation: temperature dependence . Macromolecules, 25, p. 1090-1095 (1992).
https://doi.org/10.1021/ma00029a013
 
20. Y.C. Jean, Positron annihilation in polymers . Mat. Sci. Forum, 175-178, p. 59-70 (1995).
https://doi.org/10.4028/www.scientific.net/MSF.175-178.59
 
21. R. Zhang, Y.C. Wu, H. Chen, J. Zhang, Y. Li, T.C. Sandreczki, Y.C. Jean, Chemical environment in halogenated styrene polymers studied by using positron annihilation lifetime spectroscopy . Rad. Phys. Chem. 68, p. 481-484 (2003).
https://doi.org/10.1016/S0969-806X(03)00212-3
 
22. T. Kavetskyy, J. Borc, P. Petkov, K. Kolev, T. Petkova, V. Tsmots, Reply on the "critical comments on speculations with ... free-volume defects ... in ion-conducting Ag/AgI-As2S3 glasses..." . Solid State Ionics, 233, p. 107-109 (2013).
https://doi.org/10.1016/j.ssi.2012.11.016
 
23. T. Kavetskyy, Modified correlation equation in the FSDP-related void-based model for As2S(Se)3 chalcogenide glass . Semiconductor Physics, Quantum Electronics & Optoelectronics, 16, p. 136-139 (2013).
https://doi.org/10.15407/spqeo16.02.136
 
24. S.J. Tao, Positronium annihilation in molecular substances . J. Chem. Phys. 56, p. 5499-5510 (1972).
https://doi.org/10.1063/1.1677067
 
25. M. Eldrup, D. Lightbody, J.N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic acid . Chem. Phys. 63, p. 51-58 (1981).
https://doi.org/10.1016/0301-0104(81)80307-2
 
26. V.I. Grafutin, I.N. Meshkov, E.P. Prokop'ev, N.O. Khmelevskii, S.L. Yakovenko, Determination of the size of vacancy-type defects in angstrom ranges by positron annihilation spectroscopy . Rus. Microelectronics, 40, p. 428-435 (2011).
https://doi.org/10.1134/S1063739711050039
 
27. M. Kastner, Compositional trends in the optical properties of amorphous lone-pair semiconductors . Phys. Rev. B, 7, p. 5237-5252 (1973).
https://doi.org/10.1103/PhysRevB.7.5237
 
28. L. Pauling, The Nature of the Chemical Bond. Cornell Univ. Press, Ithaca, 1960.
 
29. K.O. Jensen, P.S. Salmon, I.T. Penfold, P.G. Coleman, Microvoids in chalcogenide glasses studied by positron annihilation . J. Non-Cryst. Solids, 170, p. 57-64 (1994).
https://doi.org/10.1016/0022-3093(94)90103-1
 
30. M. Sob, H. Sormann, J. Kuriplach, Theoretical calculations of positron annihilation characteristics in inorganic solids - recent advantages and problems . Adv. Quant. Chem. 42, p. 77-108 (2003).
https://doi.org/10.1016/S0065-3276(03)42042-X
 
31. M.J. Puska, Theoretical aspects of positrons in imperfect solids . Phys. Status Solidi (A), 102, p. 11-29 (1987).
https://doi.org/10.1002/pssa.2211020102
 
32. M.J. Puska, R.M. Nieminen, Theory of positrons in solids and on solid surfaces . Rev. Mod. Phys. 66, p. 841-897 (1994).
https://doi.org/10.1103/RevModPhys.66.841
 
33. M.J. Puska, S. Makinen, M. Manninen, R.M. Nieminen, Screening of positrons in semiconductors and insulators . Phys. Rev. B, 39, p. 7666-7679 (1989).
https://doi.org/10.1103/PhysRevB.39.7666
 
34. O.K. Alekseeva, V.I. Mihailov, A.P. Chernov, V.P. Shantarovich, Point structural defects studied in chalcogenide semiconductors by positron annihilation . Fizika Tverd. Tela, 19, p. 3452-3454 (1977).
 
35. O.K. Alekseeva, V.I. Mihajlov, V.P. Shantarovich, Positron annihilation in point defects of the glassy As-Se system . Phys. Status Solidi (A), 48, p. K169-K173 (1978).
https://doi.org/10.1002/pssa.2210480261
 
36. M. Saito, A. Oshiyama, Lifetimes of positrons trapped at Si vacancies . Phys. Rev. B, 53, p. 7810-7814 (1996).
https://doi.org/10.1103/PhysRevB.53.7810
 
37. R. Golovchak, A. Kovalskiy, A.C. Miller, H. Jain, O. Shpotyuk, Structure of Se-rich As-Se glasses by high-resolution X-ray photoelectron spectroscopy . Phys. Rev. B, 76, 125208-1-7 (2007).
https://doi.org/10.1103/PhysRevB.76.125208
 
38. R.M. Nieminen, J. Laakkonen, Positron trapping rate into vacancy clusters . Appl. Phys. 20, p. 181-184 (1979).
https://doi.org/10.1007/BF00885942
 
39. P. Hautojarvi, J. Heinio, M. Manninen, R. Nieminen, The effect of microvoid size on positron annihilation characteristics and residual resistivity in metals . Phil. Mag. 35, p. 973-981 (1977).
https://doi.org/10.1080/14786437708232638
 
40. P. Hautojarvi, Positron annihilation studies of vacancy-type defects . Hyperfine Interactions, 15/16, p. 357-370 (1983).
https://doi.org/10.1007/BF02159769
 
41. P. Jena, A.K. Gupta, K.S. Singwi, Positron annihilation in small metal voids . Solid State Communs. 21, p. 293-296 (1977).
https://doi.org/10.1016/0038-1098(77)90190-9
 
42. M. Eldrup, B.N. Singh, Studies of defects and defect agglomerates by positron annihilation spectroscopy . J. Nucl. Mat. 251, p. 132-138 (1997).
https://doi.org/10.1016/S0022-3115(97)00221-3
 
43. S. Hautakanges, K. Saarinen, L. Liszkay, J.A. Freitas Jr., R.L. Henry, Role of open volume defects in Mg-doped GaN films studied by positron annihilation spectroscopy . Phys. Rev. B, 72, 165303-1-10 (2005).
https://doi.org/10.1103/physrevb.72.165303
 
44. R. Aavikko, K. Saarinen, F. Tuomisto, B. Mag-nusson, N.T. Son, E. Lanzen, Clustering of vacancy defects in high-purity semi-insulating SiC . Phys. Rev. B, 75, 085208-1-8 (2007).
https://doi.org/10.1103/PhysRevB.75.085208
 
45. M.J. Puska, C. Corbel, Positron states in Si and GaAs . Phys. Rev. B, 38, p. 9874-9880 (1988).
https://doi.org/10.1103/PhysRevB.38.9874
 
46. H. Schmitz, F. Muller-Plathe, Calculation of the lifetime of positronium in polymers via molecular dynamics simulation . J. Chem. Phys. 112, p. 1040-1045 (2000).
https://doi.org/10.1063/1.480627