Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N
3. P. 301-307.
References 1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene . Nature, 438 (7065), p. 197 (2005).https://doi.org/10.1038/nature04233 2. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene . Nature, 438 (7065), p. 201 (2005). https://doi.org/10.1038/nature04235 3. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal'ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. Geim, Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene . Nature Physics, 2(3), p. 177 (2006). https://doi.org/10.1038/nphys245 4. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene . Science, 315 (5817), p. 1379 (2007). https://doi.org/10.1126/science.1137201 5. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene . Nature Materials, 6(9), p. 652 (2007). https://doi.org/10.1038/nmat1967 6. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Spin qubits in graphene quantum dots . Nature Physics, 3(3), p. 192 (2007). https://doi.org/10.1038/nphys544 7. T. Yokoyama, Controllable spin transport in ferromagnetic graphene junctions . Phys. Rev. B, 77(7), 073413 (2008). https://doi.org/10.1103/PhysRevB.77.073413 8. F. Rana, Graphene terahertz plasmon oscillators . Nanotechnology, IEEE Trans. 7(1), p. 91 (2008). 9. A.K. Geim, K.S. Novoselov, The rise of graphene . Nature Materials, 6(3), p. 183 (2007). https://doi.org/10.1038/nmat1849 10. R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications . Nanoscale, 5(1), p. 38 (2013). https://doi.org/10.1039/C2NR32629A 11. B. Lang, A LEED study of the deposition of carbon on platinum crystal surfaces . Surf. Sci. 53(1), p. 317 (1975). https://doi.org/10.1016/0039-6028(75)90132-6 12. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: A Review . Critical Reviews in Solid State and Materials Sciences, 35(1), p. 52 (2010). https://doi.org/10.1080/10408430903505036 13. P. Sutter, Epitaxial graphene: How silicon leaves the scene . Nature Materials, 8(3), p. 171 (2009). https://doi.org/10.1038/nmat2392 14. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide . Nature Materials, 8(3), p. 203 (2009). https://doi.org/10.1038/nmat2382 15. R.M. Tromp, J.B. Hannon, Thermodynamics and kinetics of graphene growth on SiC (0001) . Phys. Rev. Lett. 102(10), 106104 (2009). https://doi.org/10.1103/PhysRevLett.102.106104 16. K. Zhu, L. Guo, J. Lin, W. Hao, J. Shang, Y. Jia, L. Chen, S. Jin, W. Wang, X. Chen, Graphene covered SiC powder as advanced photocatalytic material . Appl. Phys. Lett. 100(2), 023113 (2012). https://doi.org/10.1063/1.3676042 17. T. Peng, H. Lv, D. He, M. Pan, S. Mu, Direct transformation of amorphous silicon carbide into graphene under low temperature and ambient pressure . Scientific Reports, 3 (2013). https://doi.org/10.1038/srep01148 18. J. Hass, W.A. De Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene . J. Phys.: Condens. Matter, 20(32), 323202 (2008). https://doi.org/10.1088/0953-8984/20/32/323202 19. S. Mikhailov, Physics and Applications of Graphene - Experiments. InTech, 2011. https://doi.org/10.5772/590 20. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene . Phys. Repts. 473, p. 51 (2009). https://doi.org/10.1016/j.physrep.2009.02.003 21. Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, Z. X. Shen, Raman spectroscopy of epitaxial graphene on a SiC substrate . Phys. Rev. B, 77, 115416 (2008). https://doi.org/10.1103/PhysRevB.77.115416 22. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation . Phys. Rev. B, 79, 205433 (2009). https://doi.org/10.1103/PhysRevB.79.205433 23. C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Raman fingerprint of charged impurities in graphene . Appl. Phys. Lett. 91, 233108 (2007). https://doi.org/10.1063/1.2818692 24. P. Poncharal, A. Ayari, T. Michel, and J.-L. Sauvajol, Raman spectra of misoriented bilayer graphene . Phys. Rev. B, 78, 113407 (2008). https://doi.org/10.1103/PhysRevB.78.113407 25. J. Hass, W.A. de Heer and E.H. Conrad, The growth and morphology of epitaxial multilayer graphene . J. Phys.: Condens. Matter, 20, 323202 (2008). https://doi.org/10.1088/0953-8984/20/32/323202 26. S. Latil, V. Meunier, L. Henrard, Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints . Phys. Rev. B, 76, 201402 (2007). https://doi.org/10.1103/PhysRevB.76.201402 27. J.M.B. Lopes dos Santos, N.M.R. Peres, and A.H. Castro Neto, Graphene bilayer with a twist: Electronic structure . Phys. Rev. Lett. 99, 256802 (2007). https://doi.org/10.1103/PhysRevLett.99.256802 28. Yuehua Xu, Xiaowei Li and Jinming Dong, Infrared and Raman spectra of AA-stacking bilayer graphene . Nanotechnology, 21, 065711 (2010). https://doi.org/10.1088/0957-4484/21/6/065711 29. Z. Ni, Y. Wang, T. Yu, Y. You, Z. Shen, Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy . Phys. Rev. B, 77, 235403 (2008). https://doi.org/10.1103/PhysRevB.77.235403 30. C. Faugeras, A. Nerrire, M. Potemski, A. Mahmood, E. Dujardin, C. Berger and W.A. de Heer, Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study . Appl. Phys. Lett. 92, 011914 (2008). https://doi.org/10.1063/1.2828975 31. K.V. Emtsev, F. Speck, Th. Seyller, and L. Ley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study . Phys. Rev. B, 77, 155303 (2008). https://doi.org/10.1103/PhysRevB.77.155303 32. H. Wilhelm, M. Lelaurain, E. McRae, and B. Humbert, Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character. J. Appl. Phys. 84,6552 (1998). https://doi.org/10.1063/1.369027 33. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A.M. Rao, M. Ishigami, Effects of layer stacking on the combination Raman modes in graphene . ACS Nano, 5(3), p. 1594 (2011). https://doi.org/10.1021/nn1031017 34. A.K. Gupta, Youjian Tang, V.H. Crespi, and P.C. Eklund, Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene . Phys. Rev. B, 82, 241406(R) (2010). 35. M. Okano, R. Matsunaga, K. Matsuda, S. Masubuchi, T. Machida, Y. Kanemitsu, Raman study on the interlayer interactions and the band structure of bilayer graphene synthesized by alcohol chemical vapor deposition . Appl. Phys. Lett. 99, 151916 (2011). https://doi.org/10.1063/1.3651325 36. J. Hofrichter, B.N. Szafranek, M. Otto, T.J. Echtermeyer, M. Baus, A. Majerus, V. Geringer, M. Ramsteiner, H. Kurz, Synthesis of graphene on silicon dioxide by a solid carbon source . Nano Lett. 10, p. 36 (2010). https://doi.org/10.1021/nl902558x |