Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 3. P. 301-307.
https://doi.org/10.15407/spqeo17.03.301


                                                                 

References

1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene . Nature, 438 (7065), p. 197 (2005).
https://doi.org/10.1038/nature04233
 
2. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene . Nature, 438 (7065), p. 201 (2005).
https://doi.org/10.1038/nature04235
 
3. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal'ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. Geim, Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene . Nature Physics, 2(3), p. 177 (2006).
https://doi.org/10.1038/nphys245
 
4. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene . Science, 315 (5817), p. 1379 (2007).
https://doi.org/10.1126/science.1137201
 
5. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene . Nature Materials, 6(9), p. 652 (2007).
https://doi.org/10.1038/nmat1967
 
6. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Spin qubits in graphene quantum dots . Nature Physics, 3(3), p. 192 (2007).
https://doi.org/10.1038/nphys544
 
7. T. Yokoyama, Controllable spin transport in ferromagnetic graphene junctions . Phys. Rev. B, 77(7), 073413 (2008).
https://doi.org/10.1103/PhysRevB.77.073413
 
8. F. Rana, Graphene terahertz plasmon oscillators . Nanotechnology, IEEE Trans. 7(1), p. 91 (2008).
 
9. A.K. Geim, K.S. Novoselov, The rise of graphene . Nature Materials, 6(3), p. 183 (2007).
https://doi.org/10.1038/nmat1849
 
10. R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications . Nanoscale, 5(1), p. 38 (2013).
https://doi.org/10.1039/C2NR32629A
 
11. B. Lang, A LEED study of the deposition of carbon on platinum crystal surfaces . Surf. Sci. 53(1), p. 317 (1975).
https://doi.org/10.1016/0039-6028(75)90132-6
 
12. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: A Review . Critical Reviews in Solid State and Materials Sciences, 35(1), p. 52 (2010).
https://doi.org/10.1080/10408430903505036
 
13. P. Sutter, Epitaxial graphene: How silicon leaves the scene . Nature Materials, 8(3), p. 171 (2009).
https://doi.org/10.1038/nmat2392
 
14. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide . Nature Materials, 8(3), p. 203 (2009).
https://doi.org/10.1038/nmat2382
 
15. R.M. Tromp, J.B. Hannon, Thermodynamics and kinetics of graphene growth on SiC (0001) . Phys. Rev. Lett. 102(10), 106104 (2009).
https://doi.org/10.1103/PhysRevLett.102.106104
 
16. K. Zhu, L. Guo, J. Lin, W. Hao, J. Shang, Y. Jia, L. Chen, S. Jin, W. Wang, X. Chen, Graphene covered SiC powder as advanced photocatalytic material . Appl. Phys. Lett. 100(2), 023113 (2012).
https://doi.org/10.1063/1.3676042
 
17. T. Peng, H. Lv, D. He, M. Pan, S. Mu, Direct transformation of amorphous silicon carbide into graphene under low temperature and ambient pressure . Scientific Reports, 3 (2013).
https://doi.org/10.1038/srep01148
 
18. J. Hass, W.A. De Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene . J. Phys.: Condens. Matter, 20(32), 323202 (2008).
https://doi.org/10.1088/0953-8984/20/32/323202
 
19. S. Mikhailov, Physics and Applications of Graphene - Experiments. InTech, 2011.
https://doi.org/10.5772/590
 
20. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene . Phys. Repts. 473, p. 51 (2009).
https://doi.org/10.1016/j.physrep.2009.02.003
 
21. Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, Z. X. Shen, Raman spectroscopy of epitaxial graphene on a SiC substrate . Phys. Rev. B, 77, 115416 (2008).
https://doi.org/10.1103/PhysRevB.77.115416
 
22. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation . Phys. Rev. B, 79, 205433 (2009).
https://doi.org/10.1103/PhysRevB.79.205433
 
23. C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Raman fingerprint of charged impurities in graphene . Appl. Phys. Lett. 91, 233108 (2007).
https://doi.org/10.1063/1.2818692
 
24. P. Poncharal, A. Ayari, T. Michel, and J.-L. Sauvajol, Raman spectra of misoriented bilayer graphene . Phys. Rev. B, 78, 113407 (2008).
https://doi.org/10.1103/PhysRevB.78.113407
 
25. J. Hass, W.A. de Heer and E.H. Conrad, The growth and morphology of epitaxial multilayer graphene . J. Phys.: Condens. Matter, 20, 323202 (2008).
https://doi.org/10.1088/0953-8984/20/32/323202
 
26. S. Latil, V. Meunier, L. Henrard, Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints . Phys. Rev. B, 76, 201402 (2007).
https://doi.org/10.1103/PhysRevB.76.201402
 
27. J.M.B. Lopes dos Santos, N.M.R. Peres, and A.H. Castro Neto, Graphene bilayer with a twist: Electronic structure . Phys. Rev. Lett. 99, 256802 (2007).
https://doi.org/10.1103/PhysRevLett.99.256802
 
28. Yuehua Xu, Xiaowei Li and Jinming Dong, Infrared and Raman spectra of AA-stacking bilayer graphene . Nanotechnology, 21, 065711 (2010).
https://doi.org/10.1088/0957-4484/21/6/065711
 
29. Z. Ni, Y. Wang, T. Yu, Y. You, Z. Shen, Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy . Phys. Rev. B, 77, 235403 (2008).
https://doi.org/10.1103/PhysRevB.77.235403
 
30. C. Faugeras, A. Nerrire, M. Potemski, A. Mahmood, E. Dujardin, C. Berger and W.A. de Heer, Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study . Appl. Phys. Lett. 92, 011914 (2008).
https://doi.org/10.1063/1.2828975
 
31. K.V. Emtsev, F. Speck, Th. Seyller, and L. Ley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study . Phys. Rev. B, 77, 155303 (2008).
https://doi.org/10.1103/PhysRevB.77.155303
 
32. H. Wilhelm, M. Lelaurain, E. McRae, and B. Humbert, Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character. J. Appl. Phys. 84,6552 (1998).
https://doi.org/10.1063/1.369027
 
33. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A.M. Rao, M. Ishigami, Effects of layer stacking on the combination Raman modes in graphene . ACS Nano, 5(3), p. 1594 (2011).
https://doi.org/10.1021/nn1031017
 
34. A.K. Gupta, Youjian Tang, V.H. Crespi, and P.C. Eklund, Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene . Phys. Rev. B, 82, 241406(R) (2010).
 
35. M. Okano, R. Matsunaga, K. Matsuda, S. Masubuchi, T. Machida, Y. Kanemitsu, Raman study on the interlayer interactions and the band structure of bilayer graphene synthesized by alcohol chemical vapor deposition . Appl. Phys. Lett. 99, 151916 (2011).
https://doi.org/10.1063/1.3651325
 
36. J. Hofrichter, B.N. Szafranek, M. Otto, T.J. Echtermeyer, M. Baus, A. Majerus, V. Geringer, M. Ramsteiner, H. Kurz, Synthesis of graphene on silicon dioxide by a solid carbon source . Nano Lett. 10, p. 36 (2010).
https://doi.org/10.1021/nl902558x