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1. Introduction

It is known that action of microwave radiation on device 
structures and final products (diodes, transistors, 
integrated circuits) often leads to their degradation and 
catastrophic failures. There are literature data indicating 
the effects of defect gettering and structural relaxation in 
semiconductor materials induced by microwave 
radiation. In those cases, attention is paid to non-thermal 
nature of such actions as well as on processes induced by 
them at the metalsemiconductor and insulator
semiconductor interfaces [1, 2] that are integral parts of 
MIS transistor structures. At the same time, there is no 
model in literature that could unambiguously explain 
mechanism of non-thermal action on the oxide 
layer/semiconductor structures.

In this work, a model is proposed that gives 
consistent explanation for mechanism of non-thermal 
action of microwave radiation on the thin oxide film SiO2

(ТiO2, Er2O3, Gd2O3)/SiC and SiO2/GaAs structures.

2. Experimental results

In experimental works [3-7] it was shown that a short-
term microwave annealing of frequency 2.45 GHz leads 
to increase of optical transmission in thin oxide 
film/silicon carbide structures (Fig. 1) and appearance of 

additional bands in photoluminescence (PL) spectra of 
similar structures (Fig. 2) or redistribution of PL bands 
intensity, as in GaAs/SiO2 structures (Fig. 3).

It was shown in [1, 2, 8-12] that changes in 
semiconductor defect subsystem under action of 
microwave radiation may be of thermal as well as non-
thermal character. The thermal mechanisms of action of 
microwave radiation may be classified into three groups 
for convenience [8, 9]. One of the possible mechanisms 
is related to dielectric polarization. Such type of action 
of microwave field on dielectric materials involves the 
following processes:
 distortion of electron clouds of separate atoms; 

generally the electron shells of many-electron 
atoms (those of high atomic number) are easier 
deformed (atoms are polarized easier);

 alignment of molecules or structural elements with 
a constant dipole momentum along the field lines;

 deformation (variation of bond angle and length) of 
molecules, both with and without dipole moment, 
under action of a microwave field.
Another mechanism of action of microwave 

radiation involves free-charge currents that are excited in 
solids and contribute to heating because of ohmic losses. 
This mechanism is typical for high-conduction solids. One 
more mechanism to be accounted for is due to ohmic 
losses related to eddy currents excited by magnetic fields.
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Fig. 1. Transmission spectra of the oxide film/SiC structures: 
(a) TiO2, (b) Gd2O3, (c) Er2O3 taken before (1 – initial 
structure) and after microwave annealing. Total time of 
microwave annealing: 1 s (2), 2 (3), 3 (4), 8 (5) [6].

To determine the degree of thermal action of 
microwave radiation on the specimens under 
investigation, let us estimate temperature variation T
owing to such action. Since the oxide layer does not 
absorb microwave radiation [13], the only source of 
specimen heating is absorption of microwave radiation in 
semiconductor. Let us assume that the specimen absorbs 
the total microwave radiation, and the absorbed energy is 
uniformly distributed over the specimen volume. Then the 
highest possible temperature of heated specimen is




VС

E
T . (1)

Here V is the specimen volume (in our case. the 
average specimen volume V = 0.0125 cm3); E = Wt is 
the energy passing to the specimen in a time t, W = PV, 
P is the microwave radiation power per specimen unit 
volume (0.04 W/cm3); С() is SiC thermal capacity 
(density): С = 620750 J/kgdeg = 0.620.75 J/gdeg 
[14],  = 3170 kg/m3 = 3.170 g/cm3 [14].

After inserting the above parameters to Eq. (1), 
taking irradiation time to equal 1 s and assuming that the 
total microwave radiation is absorbed by the specimen, 
we obtain that its temperature may change by 
T = 0.02 . Therefore, it is possible to neglect the 
contribution from thermal mechanism when explaining 
the observed variations of properties of metal oxide film 
and silicon carbide at the film/SiC interface appearing 
under microwave irradiation.
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Fig. 2. PL spectra of the oxide film/SiC structures taken before 
(1 – initial structure) and after microwave annealing (2 –
TiO2/SiC, 3 – Gd2O3/SiC, 4 – Er2O3/SiC). Total time of 
microwave annealing 8 s [6].
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Fig. 3. PL spectra of the SiO2/GaAs structure taken on the side 
of SiO2 film before (1 – initial structure) and after microwave 
annealing (26). Total time of microwave irradiation: 
1 min (2), 2 (3), 3 (4), 8 (5), 13 (6) [7].
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3. Possible model for non-thermal action of 
microwave radiation

A single quantum of microwave radiation of frequency 

2.45 GHz is ~ eV10 5 . This is much below the activation 
energy of migration for migration of inherent atoms, 
their vacancies and impurity atoms in SiC (from 1.47 eV 
[4] to 8 eV [15]) as well as phonon energy in silicon 

carbide (~   eV1010010 3 [16]).

The most likely reason for appearance of non-
thermal effect of microwave radiation is presence in a 
crystal of nonequilibrium states that cause sensitivity of 
defect structure to action of microwave radiation. In 
particular, it was noted in [17, 18] when considering 
effect of low electric fields on nonmagnetic crystals that 
such effect is just due to presence of structural defects in 
them. It may be assumed that microwave field (as 
magnetic field) can lower the potential barriers (related to 
random distribution of the fields of intrinsic stresses in a 
crystal) that must be surmounted to provide dislocation 
movement [17, 18].

Besides, microwave radiation can affect not only 
on the process of dislocation interaction with an obstacle 
but on the structure of dislocation nuclei and obstacles as 
well. The obstacles may be several impurity atoms and 
cation vacancies as well as be of variable composition 
[17, 18]. Relaxation of intrinsic stresses leads to inverse 
effect, namely, gradual decrease of the number of 
moving dislocations.

In [19] the FrankRead mechanism of dislocation 
multiplication was considered to explain the results of 
action of microwave radiation on GaAs. Special attention 
was paid to analysis of variation of the critical field 
strength Ec leading to generation of dislocation loops. The 
calculations made in [19] showed that production of 
critical electric field (Ec = 1.7×107 V/m) in GaAs requires 
application of microwave frequencies of about 84 GHz. 
At the same time, the authors of [19] considered a 
possibility of Ec reduction as the frequency of microwave 
oscillations is approaching the eigenfrequencies of 
dislocation vibrations. For GaAs, the minimal 
eigenfrequency of vibrations of a dislocation segment of 
length L = 103b (b is the Burgers vector) calculated 
within the string model was 1 = 13 GHz. However, it 
was noted in [19] that the impurity atoms accumulated at 
dislocations may lead to decrease of the eigenfrequencies 
of dislocation vibrations.

Let us consider resonance interaction of microwave 
radiation with dislocations in somewhat different aspect. 
Because of lattice mismatch of different layers, elastic 
stresses appear in substrate and oxide layer of a 
multilayer system (in our case, the composition of oxide 
layers is close to stoichiometric one [4, 6]). 
Compensation of lattice mismatch of the substrate and 
oxide layer becomes energetically efficient not only due 
to elastic strain over the whole interfacial area between 
the two lattices but partially owing to dislocations 
appearing at that surface as well [20]. In particular, 

dislocations in silicon carbide are nuclei of stacking 
faults (cubic SiC interlayers in 4Н-SiC or 6Н-SiC) in the 
bulk of epitaxial layer or at the epitaxial layer–substrate 
interface [21]. In this case, dislocations may split into 
partials, thus leading to reduction of the energy of elastic 
lattice distortions around dislocations.

It was noted in [22] that dislocation interaction with 
a phonon leads to appearance of a stress field that may 
cause movement of dislocation as a whole. Besides, 
according to [17], interaction of dislocation with an 
obstacle (the nature of the obstacle is not considered 
here) results in appearance, along with characteristic 
frequencies of the phonon spectrum (ph = 1061013 Hz), 
of a set of natural vibrations of dislocations.

According to [23], an equation for displacement 
u(y, t) of a dislocation loop (of length l) with rigid ends 
and vibrating (similarly to an elastic string) under a 
periodic external action may be presented as

  .
2

2

b
y

u
uBuml 




  (2)

Here ml is the dislocation effective mass per unit 
length,  is the effective dislocation line tension,  = 
0e

it is the oscillating shear tension caused by an 
external action, b is the Burgers vector modulus. The 
boundary conditions are u(0, t) = u(l, t) = 0. A parameter 
B in Eq. (2) corresponds to damping constant. The term 

2

2

y

u




  characterizes restoring force per unit length. The 

 value is estimated from the relation

,
2

1
~ 2Gb (3)

where G is the shear modulus. The quantity ml is 
determined as

2bml  , (4)

where  is the material density.
According to [23], the dependence u(y, t) for a 

dislocation loop is

    ,, 2
0

tieylyAtyu  (5)

where A = /2. By inserting Eq. (5) in Eq. (2) and 
integrating from y = 0 to y = l, we obtain

bAl
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and




12

2Bl
. (9)

At low attenuation, the quantity

 2/00 (10)

acts as resonance frequency at which |A| achieves its 
maximal value that is limited by the damping constant 
only. By inserting Eqs. (3) and (4) in Eq. (8), we obtain 
for the frequency 0:
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Based on Eq. (10), it is possible to estimate size of 
dislocations for which the frequency  = 2.45 GHz of 
microwave radiation used in our experiments is 
resonance. In the case of  = 0, we obtain

2
0

2
2

2

3




G
l . (12)

Inserting the values of  and G for silicon carbide 
(G = 160 GPa [14]) and SiO2, TiO2, Gd2O3 and Er2O3

oxide films in Eq. (12), we obtain that the frequency  = 
19 s1045.2   is resonance for partial dislocations of 

length l  cm10 4 .
Thus, resonance interaction of 2.45 GHz microwave

radiation with dislocations can result in release of 

dislocations with l  cm10 4  and their movement in 
both silicon carbide substrate and oxide layer. The 
movement of dislocations, in its turn, will lead to 
variation of distribution of intrinsic stresses in the 
structure under investigation, with further change of 
number and configuration of dislocations.

When considering resonance interaction of 
microwave radiation with dislocations one should take 
into account that any impurities in a crystal that can serve 
as obstacles for dislocations are sources of vibrations 
with frequencies ph = 106-1013 Hz. Since the frequency 
of microwave radiation used in the experiment lies in the 
frequency range of obstacles vibrations, the condition of 
resonance release of dislocation from an obstacle may be 
fulfilled not only for dislocations of strictly determined 
size but also for those of arbitrary size but attached to an 
obstacle that is vibrating with the resonance frequency.

According to [20, 24], presence of dislocations in 
material leads to local variations of both bandgap width 
and concentration of impurities and lattice defects (in 
particular, the stacking faults) near dislocations. In 
silicon carbide, the stacking faults are interlayers of 
cubic SiC in 4Н- or 6Н-SiC [21]. Owing to presence of 
free or unsaturated bonds at dislocation nucleus as well 
as to interaction of dislocations with impurities and 
lattice defects, the corresponding energy levels appear in 

the crystal bandgap. As a result, the band structure near 
dislocations is extremely complicated [24].

Generally a dislocation forms isolated centers that 
may serve as centers of radiative as well as non-radiative 
electron-hole recombination [24]. It should be noted that 
the energy released at non-radiative recombination of an 
electron-hole pair in SiC is sufficient for overcoming a 
barrier preventing atom displacement to another 
position. I.e. a local reconstruction of hexagonal 
polytype lattice to that of cubic one occurs, with 
formation of a cubic polytype interlayer [21].

Anisotropy of dislocation movement [20, 24, 25] 
enables one to explain the following experimental fact: 
At similar microwave annealing conditions, structural 
variations at the macroscopic level (in particular, those in 
transmission spectra) were detected only if an oxide film 
was deposited onto a crystalline substrate. No changes in 
the transmission spectra of a structure were observed
after action of microwave radiation if an oxide film was 
deposited onto a glass substrate. This result may be 
explained as follows. Because of anisotropy of 
dislocation movement [24, 25], a set of dislocations of 
preferred orientation appears in a crystalline structure. 
This results in anisotropic distribution of absorption 
centers interacting with dislocations that shows itself in 
the absorption spectra. There are no preferred 
orientations in glass; therefore, average distribution of 
defects and dislocations in a glass substrate remains 
invariable at the macrolevel [26], even if variations in 
dislocation distribution occur at the microlevel.

4. Conclusion

Thus, within the assumption of resonance interaction of 
microwave radiation with dislocations that leads to 
variation of dislocation number and configuration, one 
can conclude that action of microwave radiation has to 
result in redistribution of recombination centers at the 
semiconductor–oxide layer interface. This, in its turn, 
leads to appearance of additional bands in PL spectra of 
the oxide film/SiC structures or intensity redistribution 
for some bands in PL spectra of the SiO2/GaAs structure, 
as well as to optical density variation for the oxide 
film/SiC structures. It should be taken into account that, 
because of anisotropy of dislocation movement in 
crystals, the resonance interaction of microwave radiation 
with dislocations is most efficient in structures with 
crystalline substrates.
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1. Introduction 

It is known that action of microwave radiation on device structures and final products (diodes, transistors, integrated circuits) often leads to their degradation and catastrophic failures. There are literature data indicating the effects of defect gettering and structural relaxation in semiconductor materials induced by microwave radiation. In those cases, attention is paid to non-thermal nature of such actions as well as on processes induced by them at the metal(semiconductor and insulator( semiconductor interfaces [1, 2] that are integral parts of MIS transistor structures. At the same time, there is no model in literature that could unambiguously explain mechanism of non-thermal action on the oxide layer/semiconductor structures.


In this work, a model is proposed that gives consistent explanation for mechanism of non-thermal action of microwave radiation on the thin oxide film SiO2 (ТiO2, Er2O3, Gd2O3)/SiC and SiO2/GaAs structures.


2. Experimental results


In experimental works [3-7] it was shown that a short-term microwave annealing of frequency 2.45 GHz leads to increase of optical transmission in thin oxide film/silicon carbide structures (Fig. 1) and appearance of additional bands in photoluminescence (PL) spectra of similar structures (Fig. 2) or redistribution of PL bands intensity, as in GaAs/SiO2 structures (Fig. 3).


It was shown in [1, 2, 8-12] that changes in semiconductor defect subsystem under action of microwave radiation may be of thermal as well as non-thermal character. The thermal mechanisms of action of microwave radiation may be classified into three groups for convenience [8, 9]. One of the possible mechanisms is related to dielectric polarization. Such type of action of microwave field on dielectric materials involves the following processes:


· distortion of electron clouds of separate atoms; generally the electron shells of many-electron atoms (those of high atomic number) are easier deformed (atoms are polarized easier);


· alignment of molecules or structural elements with a constant dipole momentum along the field lines;


· deformation (variation of bond angle and length) of molecules, both with and without dipole moment, under action of a microwave field.


Another mechanism of action of microwave radiation involves free-charge currents that are excited in solids and contribute to heating because of ohmic losses. This mechanism is typical for high-conduction solids. One more mechanism to be accounted for is due to ohmic losses related to eddy currents excited by magnetic fields.
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Fig. 1. Transmission spectra of the oxide film/SiC structures: (a) TiO2, (b) Gd2O3, (c) Er2O3 taken before (1 – initial structure) and after microwave annealing. Total time of microwave annealing: 1 s (2), 2 (3), 3 (4), 8 (5) [6].

To determine the degree of thermal action of microwave radiation on the specimens under investigation, let us estimate temperature variation (T owing to such action. Since the oxide layer does not absorb microwave radiation [13], the only source of specimen heating is absorption of microwave radiation in semiconductor. Let us assume that the specimen absorbs the total microwave radiation, and the absorbed energy is uniformly distributed over the specimen volume. Then the highest possible temperature of heated specimen is
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Here V is the specimen volume (in our case. the average specimen volume V = 0.0125 cm3); E = W(t is the energy passing to the specimen in a time t, W = P(V, P is the microwave radiation power per specimen unit volume (0.04 W/cm3); С(() is SiC thermal capacity (density): С = 620(750 J/kg(deg = 0.62(0.75 J/g(deg [14], ( = 3170 kg/m3 = 3.170 g/cm3 [14].

After inserting the above parameters to Eq. (1), taking irradiation time to equal 1 s and assuming that the total microwave radiation is absorbed by the specimen, we obtain that its temperature may change by (T = 0.02 . Therefore, it is possible to neglect the contribution from thermal mechanism when explaining the observed variations of properties of metal oxide film and silicon carbide at the film/SiC interface appearing under microwave irradiation.
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Fig. 2. PL spectra of the oxide film/SiC structures taken before (1 – initial structure) and after microwave annealing (2 – TiO2/SiC, 3 – Gd2O3/SiC, 4 – Er2O3/SiC). Total time of microwave annealing 8 s [6].
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Fig. 3. PL spectra of the SiO2/GaAs structure taken on the side of SiO2 film before (1 – initial structure) and after microwave annealing (2(6). Total time of microwave irradiation: 1 min (2), 2 (3), 3 (4), 8 (5), 13 (6) [7].


3. Possible model for non-thermal action of microwave radiation


A single quantum of microwave radiation of frequency 2.45 GHz is ~
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 [16]).


The most likely reason for appearance of non-thermal effect of microwave radiation is presence in a crystal of nonequilibrium states that cause sensitivity of defect structure to action of microwave radiation. In particular, it was noted in [17, 18] when considering effect of low electric fields on nonmagnetic crystals that such effect is just due to presence of structural defects in them. It may be assumed that microwave field (as magnetic field) can lower the potential barriers (related to random distribution of the fields of intrinsic stresses in a crystal) that must be surmounted to provide dislocation movement [17, 18].


Besides, microwave radiation can affect not only on the process of dislocation interaction with an obstacle but on the structure of dislocation nuclei and obstacles as well. The obstacles may be several impurity atoms and cation vacancies as well as be of variable composition [17, 18]. Relaxation of intrinsic stresses leads to inverse effect, namely, gradual decrease of the number of moving dislocations.

In [19] the Frank(Read mechanism of dislocation multiplication was considered to explain the results of action of microwave radiation on GaAs. Special attention was paid to analysis of variation of the critical field strength Ec leading to generation of dislocation loops. The calculations made in [19] showed that production of critical electric field (Ec = 1.7×107 V/m) in GaAs requires application of microwave frequencies of about 84 GHz. At the same time, the authors of [19] considered a possibility of Ec reduction as the frequency of microwave oscillations is approaching the eigenfrequencies of dislocation vibrations. For GaAs, the minimal eigenfrequency of vibrations of a dislocation segment of length L = 103b (b is the Burgers vector) calculated within the string model was (1 = 13 GHz. However, it was noted in [19] that the impurity atoms accumulated at dislocations may lead to decrease of the eigenfrequencies of dislocation vibrations.

Let us consider resonance interaction of microwave radiation with dislocations in somewhat different aspect. Because of lattice mismatch of different layers, elastic stresses appear in substrate and oxide layer of a multilayer system (in our case, the composition of oxide layers is close to stoichiometric one [4, 6]). Compensation of lattice mismatch of the substrate and oxide layer becomes energetically efficient not only due to elastic strain over the whole interfacial area between the two lattices but partially owing to dislocations appearing at that surface as well [20]. In particular, dislocations in silicon carbide are nuclei of stacking faults (cubic SiC interlayers in 4Н-SiC or 6Н-SiC) in the bulk of epitaxial layer or at the epitaxial layer–substrate interface [21]. In this case, dislocations may split into partials, thus leading to reduction of the energy of elastic lattice distortions around dislocations.

It was noted in [22] that dislocation interaction with a phonon leads to appearance of a stress field that may cause movement of dislocation as a whole. Besides, according to [17], interaction of dislocation with an obstacle (the nature of the obstacle is not considered here) results in appearance, along with characteristic frequencies of the phonon spectrum ((ph = 106(1013 Hz), of a set of natural vibrations of dislocations.


According to [23], an equation for displacement u(y, t) of a dislocation loop (of length l) with rigid ends and vibrating (similarly to an elastic string) under a periodic external action may be presented as
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(2)


Here ml is the dislocation effective mass per unit length, ( is the effective dislocation line tension, ( = (0ei(t is the oscillating shear tension caused by an external action, b is the Burgers vector modulus. The boundary conditions are u(0, t) = u(l, t) = 0. A parameter B in Eq. (2) corresponds to damping constant. The term 
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 characterizes restoring force per unit length. The ( value is estimated from the relation
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where G is the shear modulus. The quantity ml is determined as
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where ( is the material density.


According to [23], the dependence u(y, t) for a dislocation loop is
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where A = (/2(. By inserting Eq. (5) in Eq. (2) and integrating from y = 0 to y = l, we obtain
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or
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where
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and
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At low attenuation, the quantity
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acts as resonance frequency at which |A| achieves its maximal value that is limited by the damping constant only. By inserting Eqs. (3) and (4) in Eq. (8), we obtain for the frequency (0:
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Based on Eq. (10), it is possible to estimate size of dislocations for which the frequency ( = 2.45 GHz of microwave radiation used in our experiments is resonance. In the case of ( = (0, we obtain
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Inserting the values of ( and G for silicon carbide (G = 160 GPa [14]) and SiO2, TiO2, Gd2O3 and Er2O3 oxide films in Eq. (12), we obtain that the frequency ( = 
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 is resonance for partial dislocations of length l ( 
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Thus, resonance interaction of 2.45 GHz microwave radiation with dislocations can result in release of dislocations with l ( 
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 and their movement in both silicon carbide substrate and oxide layer. The movement of dislocations, in its turn, will lead to variation of distribution of intrinsic stresses in the structure under investigation, with further change of number and configuration of dislocations.


When considering resonance interaction of microwave radiation with dislocations one should take into account that any impurities in a crystal that can serve as obstacles for dislocations are sources of vibrations with frequencies (ph = 106-1013 Hz. Since the frequency of microwave radiation used in the experiment lies in the frequency range of obstacles vibrations, the condition of resonance release of dislocation from an obstacle may be fulfilled not only for dislocations of strictly determined size but also for those of arbitrary size but attached to an obstacle that is vibrating with the resonance frequency.


According to [20, 24], presence of dislocations in material leads to local variations of both bandgap width and concentration of impurities and lattice defects (in particular, the stacking faults) near dislocations. In silicon carbide, the stacking faults are interlayers of cubic SiC in 4Н- or 6Н-SiC [21]. Owing to presence of free or unsaturated bonds at dislocation nucleus as well as to interaction of dislocations with impurities and lattice defects, the corresponding energy levels appear in the crystal bandgap. As a result, the band structure near dislocations is extremely complicated [24].


Generally a dislocation forms isolated centers that may serve as centers of radiative as well as non-radiative electron-hole recombination [24]. It should be noted that the energy released at non-radiative recombination of an electron-hole pair in SiC is sufficient for overcoming a barrier preventing atom displacement to another position. I.e. a local reconstruction of hexagonal polytype lattice to that of cubic one occurs, with formation of a cubic polytype interlayer [21].


Anisotropy of dislocation movement [20, 24, 25] enables one to explain the following experimental fact: At similar microwave annealing conditions, structural variations at the macroscopic level (in particular, those in transmission spectra) were detected only if an oxide film was deposited onto a crystalline substrate. No changes in the transmission spectra of a structure were observed after action of microwave radiation if an oxide film was deposited onto a glass substrate. This result may be explained as follows. Because of anisotropy of dislocation movement [24, 25], a set of dislocations of preferred orientation appears in a crystalline structure. This results in anisotropic distribution of absorption centers interacting with dislocations that shows itself in the absorption spectra. There are no preferred orientations in glass; therefore, average distribution of defects and dislocations in a glass substrate remains invariable at the macrolevel [26], even if variations in dislocation distribution occur at the microlevel.


4. Conclusion


Thus, within the assumption of resonance interaction of microwave radiation with dislocations that leads to variation of dislocation number and configuration, one can conclude that action of microwave radiation has to result in redistribution of recombination centers at the semiconductor–oxide layer interface. This, in its turn, leads to appearance of additional bands in PL spectra of the oxide film/SiC structures or intensity redistribution for some bands in PL spectra of the SiO2/GaAs structure, as well as to optical density variation for the oxide film/SiC structures. It should be taken into account that, because of anisotropy of dislocation movement in crystals, the resonance interaction of microwave radiation with dislocations is most efficient in structures with crystalline substrates.
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