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1. Introduction

To define propagation constants of localized planar 
waveguide modes, a number of approximate methods are 
mainly used which are described in detail in [1, 2]. As 
usual, these methods for the first time have been 
developed for analysis of quantum mechanics problems, 
because one-dimensional stationary Schrödinger 
equation is almost identical (up to a sign in front of
second derivative) to wave equation describing 
propagation of electromagnetic waves in planar
waveguides [3]. One of the most common methods is the 
WKB method that was proposed for the first time for 
solution of the stationary Schrödinger equation in 1926. 
WKB method is also used successfully to analyze 
gradient waveguides [1], but it is not effective for all 
profiles of the refractive index.

During last two decades, computer technology has 
got unprecedented development, moreover, it has high 
performance, a significant amount of RAM and 
permanent memory. These powerful computers with 
appropriate software are accessible to ordinary scientists 
and engineers. Therefore, numerical methods for solving 
various problems of physics are now developed, in
particular, in electrodynamics.

Solution of the wave equation for planar 
waveguides by using the numerical method, where 
differential equation is changed with the corresponding 
difference one, is proposed [4, 5]. The latter is 
represented N times for consistent coordinates xn. All 
these equations together can be written as matrix 
equation of the eigenvalue (square propagation constants 
of waveguide modes)/eigenvector (field distribution in 
discrete form into xn points) problem. By proper choice 
of numerical process parameters, it can be determined all 
square propagation constants of waveguide modes
among N eigenvalues. This method has an advantage: it 
enables to define all propagation constants and 
appropriate fields in one calculation cycle. However, 
studies of this method have shown that it is characterized 
by low accuracy.

In [6, 7], the new method of finding propagation
constants of waveguide modes and appropriate fields in 
a frequency domain is described. In this method, by the 
Fourier transform we transfer from the differential wave 
equation to integral one. In the latter equation, we 
replace integral with a sum and, as a result, get the 
problem for eigenvalues (square propagation constants) 
and eigenvectors (the discrete Fourier transforms of 
appropriate fields of waveguide modes). The new 
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method provides high accuracy subject to conditions of 
the Whittaker-Shannon sampling theorem [8], and it is 
characterized by high numerical stability. Also, using
this method we define all propagation constants and all 
the Fourier transforms of corresponding waveguide 
modes in one cycle of analysis. Detailed reasoning for
the new method and its opportunities are given in 
[9, 10].

Besides, it is possible to improve this method 
significantly and expand its capabilities for symmetric 
planar waveguides. In this waveguide, permittivity is 
described by symmetric function with regard to a certain 
plane, i.e.,    xx  . In this case, functions

describing the fields are symmetric (    xExE  ) or 

asymmetric (    xExE  ). It is clear, we can go 

from the original matrix equation, where symmetry is
not taken into account, to two matrix equations of twice 
smaller dimension than the original one. It is known that 
double reduction of matrix dimension reduces the time 
of numerical calculations by eight times [11]. That is, 
usage of symmetry of planar waveguide in appropriate 
matrix equations allows to doubly reduce the matrix
dimension (separately for symmetric and asymmetric
waveguide modes) and can cause reduction of analysis 
time approximately three to four times or increase of its 
accuracy.

2. One-dimensional wave equations 
and their Fourier transforms

An example of a symmetric gradient waveguide is 
shown in Fig. 1.

If waveguide mode propagates along the axis z and
electric field is perpendicular to the plane xz (ТЕ 
polarization), the appropriate wave equation will look 
like [12]:

       xExEx
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If in a waveguide, TM polarization wave 
propagates, the appropriate wave equation with regard to 
magnetic field can be written as:
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The functions E(x), H(x) describe fields in 
waveguide localized modes, and their first derivatives 
tend towards zero at x→±∞. That’s why for these 
functions with their first and second derivatives the 
Fourier transform exists. One can write appropriate 
equations for E(x) and its two derivatives:

     uEdxuxixE 




2exp , (3)
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22exp , (4)

Fig. 1. Dependence of the permittivity on the coordinate
according to the function (x) = 2.25 + 2.79exp[(x/10)2].
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Besides, for functions for which Fourier transforms 
exist, i.e., F{G(x)} = G(u), F{H(x)} = H(u), the next 
equation is yet right:

        dvvHvuGxHxGF 




 , (6)

where F{…} is the Fourier transform. The expression 
(6) is named the convolution theorem [8].

Taking Fourier transforms of left and right parts of 
(1) and (2), as a result we obtain:
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where      dxuxixu  




2exp .

So, we have transferred from the differential 
equations (1) and (2) on eigenvalues and eigenfunctions 
in a coordinate domain to the integral ones (7) and (8) in 
a frequency domain. In these latter equations, we can 
replace integrals with sums. For example, if we take (7), 
resulting in replacement of continuous values u and v on
discrete ones we obtain:

   

     s

N

Nk
vks

ss

uEuEvu

uEu

2
2/

12/

2
22 2

4


















(9)



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2014. V. 17, N 2. P. 252-255.

© 2014, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

254

where Numax ,   21sus ,   21kvk , 

sN  12 , 2Nk  .

The value N should be taken enough large and 
paired. At N = 500, the value s will be changed from –
249 to 250. One can write the latter equation for a set of 
discrete frequencies us. Then the set of these equations 
will be written in the matrix form where β2 is common to 
all values of s:

  EBEEUP 2 , (10)

where P is the diagonal matrix of elements 

  2214  s , U is the square symmetric matrix of

elements  









ks
2

2
, E is the vector-column of 

elements    21sE .

Thus, problem to find the waveguide mode
propagation constants leads to the problem on
eigenvalues (square propagation constants β2) and
eigenvectors (the discrete Fourier transforms E(us) in us

points) corresponding to a given value of β. We can have 
few eigenvalues and appropriate eigenvectors which are 
orthogonal. Carrying out the inverse discrete Fourier 
transform of eigenvector E(us) we obtain the field 
distribution E(x).

If ε(x) is a symmetry function, the elements bi,j of 
matrix B satisfy following symmetry:

ijji bb ,,  , jNiNji bb  1,1, , (11)

where subscripts i and j change from 1 to N, and are 
related with subscripts s and k in the following way: 

2/Nsi  , 2/Nkj  . So, we transfer from E(us) to 

E(ui).
First consider the case when E(x) is a symmetric 

function, E(us) will be also symmetric with regard to us. 
To obtain matrix equation of the type (9) with two-fold
smaller dimension, add term by term the first and N-th 
lines of the matrix equation (10), then the second and 
 1N -th lines and so on. Moreover, we introduce the 

notations:
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(12)

In case of symmetric field distribution of
waveguide mode, we calculate elements of matrix B+ by
elements of matrix B, taking into account expressions 
(11) and (12):

jiNjiji bbb ,1,, 
  . (13)

We get the matrix equation for the 
eigenvalue/eigenvector problem, but only for these
propagation constants that correspond to symmetric 
functions E(u) and, therefore, to E(x):

  EEB 2 . (14)

For asymmetric field distribution we carry out 
analysis in a like manner. As the function E(x) is 
asymmetric, E(us) is also asymmetric function with 
respect to us. For obtaining matrix equation like (9) but
of twice smaller dimension, subtract N-th line from the 
first one of the matrix equation (10), then  1N -th line 

from the second and so on. In addition, we introduce the 
notations again:
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For asymmetric field distribution elements of
matrix B– are respectively:

jiNjiji bbb ,1,, 
  . (16)

In this case, the matrix equation for those 
propagation constants that correspond to asymmetric 
functions E(u) and E(x) has the form:

  EEB 2 . (17)

Subscripts i and j change from 1 to N/2 in the 
equations (14) and (17).

3. Numerical analysis

A numerical analysis was carried out for the waveguide 
which permittivity was described by:

      










,2/if,

,2/if,/21

0

2
010

dx

dxdx
x (18)

where ε0 = 2.25, ε1 = 2.89, d = 20 µm, λ = 1 µm. 
Numerical process parameters are as follows: N = 3000, 

umax = 1m30  . For waveguide (quadratic profile) of

permittivity distribution described by equation (18), 25
propagation constants were found, among which 13 
values correspond to symmetric field distribution, and 12 
ones – to asymmetric. In particular, the value 

1
0 m657860.10   is a constant at frequency change 

umax = 1m150...5  , and the value  1
24 m462809.9 

is constant for frequency range umax = 1m80...10  . We 

have got exactly the same results when: a) we searched 
propagation constants by (10), where the size of matrix 
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Fig. 2. Dependence of the calculation time on the matrix 
dimension.

B is N×N; b) we used a symmetry according to 
expressions (14) and (17), where the size of
corresponding matrices B± is N/2×N/2. However, in the 
second case, the time of analysis is less about 2.9 times
at N = 3000.

In Fig. 2, the dependences of calculation time on
matrix dimension N without symmetry (cross) and its
consideration (circle) are shown. It is seen that when we 
take into account symmetry of permittivity distribution 
the dependence of time on matrix dimension N is more
sloping than without it. Therefore, usage of symmetry 
allows to use the matrix dimension larger than 5000. If it
isn’t used, calculation time increases dramatically at 
N = 3200, and its value is about 2000 s, i.e., more than 
half an hour. So, further increase of the N value is too 
time-consuming.

4. Conclusions

Applying this approach allows to carry out analysis of 
planar waveguides that have much higher propagation 
constants of waveguide modes than in the example
shown above. Apparently, calculation time in first and
second cases depends on PC, software and programmer
skills. However, it is evident that main results regarding
usage of symmetry are unchanged: significant reduction 
in calculation time and/or new opportunities of the 
method proposed.
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1. Introduction 

To define propagation constants of localized planar waveguide modes, a number of approximate methods are mainly used which are described in detail in [1, 2]. As usual, these methods for the first time have been developed for analysis of quantum mechanics problems, because one-dimensional stationary Schrödinger equation is almost identical (up to a sign in front of second derivative) to wave equation describing propagation of electromagnetic waves in planar waveguides [3]. One of the most common methods is the WKB method that was proposed for the first time for solution of the stationary Schrödinger equation in 1926. WKB method is also used successfully to analyze gradient waveguides [1], but it is not effective for all profiles of the refractive index.


During last two decades, computer technology has got unprecedented development, moreover, it has high performance, a significant amount of RAM and permanent memory. These powerful computers with appropriate software are accessible to ordinary scientists and engineers. Therefore, numerical methods for solving various problems of physics are now developed, in particular, in electrodynamics.


Solution of the wave equation for planar waveguides by using the numerical method, where differential equation is changed with the corresponding difference one, is proposed [4, 5]. The latter is represented N times for consistent coordinates xn. All these equations together can be written as matrix equation of the eigenvalue (square propagation constants of waveguide modes)/eigenvector (field distribution in discrete form into xn points) problem. By proper choice of numerical process parameters, it can be determined all square propagation constants of waveguide modes among N eigenvalues. This method has an advantage: it enables to define all propagation constants and appropriate fields in one calculation cycle. However, studies of this method have shown that it is characterized by low accuracy.

In [6, 7], the new method of finding propagation constants of waveguide modes and appropriate fields in a frequency domain is described. In this method, by the Fourier transform we transfer from the differential wave equation to integral one. In the latter equation, we replace integral with a sum and, as a result, get the problem for eigenvalues (square propagation constants) and eigenvectors (the discrete Fourier transforms of appropriate fields of waveguide modes). The new method provides high accuracy subject to conditions of the Whittaker-Shannon sampling theorem [8], and it is characterized by high numerical stability. Also, using this method we define all propagation constants and all the Fourier transforms of corresponding waveguide modes in one cycle of analysis. Detailed reasoning for the new method and its opportunities are given in [9, 10].

Besides, it is possible to improve this method significantly and expand its capabilities for symmetric planar waveguides. In this waveguide, permittivity is described by symmetric function with regard to a certain plane, i.e., 
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). It is clear, we can go from the original matrix equation, where symmetry is not taken into account, to two matrix equations of twice smaller dimension than the original one. It is known that double reduction of matrix dimension reduces the time of numerical calculations by eight times [11]. That is, usage of symmetry of planar waveguide in appropriate matrix equations allows to doubly reduce the matrix dimension (separately for symmetric and asymmetric waveguide modes) and can cause reduction of analysis time approximately three to four times or increase of its accuracy.

2. One-dimensional wave equations 
and their Fourier transforms

An example of a symmetric gradient waveguide is shown in Fig. 1.


If waveguide mode propagates along the axis z and electric field is perpendicular to the plane xz (ТЕ polarization), the appropriate wave equation will look like [12]:
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If in a waveguide, TM polarization wave propagates, the appropriate wave equation with regard to magnetic field can be written as:
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The functions E(x), H(x) describe fields in waveguide localized modes, and their first derivatives tend towards zero at x→±∞. That’s why for these functions with their first and second derivatives the Fourier transform exists. One can write appropriate equations for E(x) and its two derivatives:
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Fig. 1. Dependence of the permittivity on the coordinate according to the function ((x) = 2.25 + 2.79exp[(((x/10)2].
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Besides, for functions for which Fourier transforms exist, i.e., F{G(x)} = G(u), F{H(x)} = H(u), the next equation is yet right:
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where F{…} is the Fourier transform. The expression (6) is named the convolution theorem [8].


Taking Fourier transforms of left and right parts of (1) and (2), as a result we obtain:
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where 
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So, we have transferred from the differential equations (1) and (2) on eigenvalues and eigenfunctions in a coordinate domain to the integral ones (7) and (8) in a frequency domain. In these latter equations, we can replace integrals with sums. For example, if we take (7), resulting in replacement of continuous values u and v on discrete ones we obtain:
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where 
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The value N should be taken enough large and paired. At N = 500, the value s will be changed from –249 to 250. One can write the latter equation for a set of discrete frequencies us. Then the set of these equations will be written in the matrix form where β2 is common to all values of s:
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where P is the diagonal matrix of elements 
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Thus, problem to find the waveguide mode propagation constants leads to the problem on eigenvalues (square propagation constants β2) and eigenvectors (the discrete Fourier transforms E(us) in us points) corresponding to a given value of β. We can have few eigenvalues and appropriate eigenvectors which are orthogonal. Carrying out the inverse discrete Fourier transform of eigenvector E(us) we obtain the field distribution E(x).


If ε(x) is a symmetry function, the elements bi,j of matrix B satisfy following symmetry:
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where subscripts i and j change from 1 to N, and are related with subscripts s and k in the following way: 
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(12)


In case of symmetric field distribution of waveguide mode, we calculate elements of matrix B+ by elements of matrix B, taking into account expressions (11) and (12):
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(13)

We get the matrix equation for the eigenvalue/eigenvector problem, but only for these propagation constants that correspond to symmetric functions E(u) and, therefore, to E(x):
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For asymmetric field distribution we carry out analysis in a like manner. As the function E(x) is asymmetric, E(us) is also asymmetric function with respect to us. For obtaining matrix equation like (9) but of twice smaller dimension, subtract N-th line from the first one of the matrix equation (10), then 
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(15)


For asymmetric field distribution elements of matrix B– are respectively:
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(16)

In this case, the matrix equation for those propagation constants that correspond to asymmetric functions E(u) and E(x) has the form:
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Subscripts i and j change from 1 to N/2 in the equations (14) and (17).

3. Numerical analysis

A numerical analysis was carried out for the waveguide which permittivity was described by:
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(18)


where ε0 = 2.25, ε1 = 2.89, d = 20 µm, λ = 1 µm. Numerical process parameters are as follows: N = 3000, umax = 
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. For waveguide (quadratic profile) of permittivity distribution described by equation (18), 25 propagation constants were found, among which 13 values correspond to symmetric field distribution, and 12 ones – to asymmetric. In particular, the value 

[image: image38.wmf]1


0


m


657860


.


10


-


m


=


b


 is a constant at frequency change umax = 

[image: image39.wmf]1


m


150


...


5


-


m


, and the value  

[image: image40.wmf]1


24


m


462809


.


9


-


m


=


b


 is constant for frequency range umax = 

[image: image41.wmf]1


m


80


...


10


-


m


. We have got exactly the same results when: a) we searched propagation constants by (10), where the size of matrix B is N×N; b) we used a symmetry according to expressions (14) and (17), where the size of corresponding matrices B± is N/2×N/2. However, in the second case, the time of analysis is less about 2.9 times at N = 3000.

In Fig. 2, the dependences of calculation time on matrix dimension N without symmetry (cross) and its consideration (circle) are shown. It is seen that when we take into account symmetry of permittivity distribution the dependence of time on matrix dimension N is more sloping than without it. Therefore, usage of symmetry allows to use the matrix dimension larger than 5000. If it isn’t used, calculation time increases dramatically at N = 3200, and its value is about 2000 s, i.e., more than half an hour. So, further increase of the N value is too time-consuming.

4. Conclusions

Applying this approach allows to carry out analysis of planar waveguides that have much higher propagation constants of waveguide modes than in the example shown above. Apparently, calculation time in first and second cases depends on PC, software and programmer skills. However, it is evident that main results regarding usage of symmetry are unchanged: significant reduction in calculation time and/or new opportunities of the method proposed.
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Fig. 2. Dependence of the calculation time on the matrix dimension.
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