Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 3. P. 259-266.
DOI: https://doi.org/10.15407/spqeo18.03.259


References

1. A.P. Gorban, V.P. Kostylyov, A.V. Sachenko, About increasing accuracy of determining photoenergetic parameters of photoconvertors on sunlight simulators uncorrected in accord with the spectrum // Netraditsionnye istochniki, peredaiuschie sistemy i preobrazovateli energii. Sbornik nauchnykh statei. vol. 1. Kharkov, p. 33-34, 1997 (in Russian).

2. PV Power PV Standarts // http://www.senes.bas.bg/pv_standarts.htm

3. GOST 28976-91. Photoelectric devices made of crystalline silicon. Method for correction by temperature and irradiance of the results of measuring the current-voltage characteristics (in Russian).

4. M.I. Klyuy, V.P. Kostylyov, A.V. Makarov, V.V. Chernenko, Metrologic aspects of testing photoelectric covertors of solar energy // Skladni systemy i protsesy, 1, p. 42-50 2007 (in Ukrainian).

5. V.P. Kostylyov, V.V. Chernenko, S.P. Andros, L.A. Nazarenko, Metrology and standardization of phototechnical tests for photoelectric covertors of solar energy and photoelectric modules // Modern problems of light engineering and electrical energetics: Materials of IV Intern. Sci.-techn. Conf. Kharkiv, April 13-14, 2011. Kharkiv National Academy of Municipal Economy, p. 164-165 (in Ukrainian).

6. A.P. Gorban, V.P. Kostylyov, V.V. Chernenko, S.P. Andros, L.A. Nazarenko, Modern problems of simulation of solar emission for testing photoelectric covertors of solar energy // Modern problems of light engineering: Materials of III Intern. Sci.-techn. Conf. Kharkiv, April 22-23, 2009 (in Ukrainian).

7. A.M. Vasilev, A.P. Landsman, Semiconductor Photoconvertors. Soviet Radio Publishers, Moscow, 1971 (in Russian).

8. A.L. Fahrenbruch, R.H. Bube, Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion. New York, 1983.

9. G.E. Pikus, Fundamentals of the Theory of Semiconductor Devices. Nauka, Moscow, 1965 (in Russian).

10. ASTM G173-03(2012), Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, ASTM International, West Conshohocken, PA, 2012 // www.astm.org

11. ISO 9845-1:1992 Solar energy – Reference solar spectral irradiance at the ground at different receiving conditions – Part 1: Direct normal and hemispherical solar irradiance for air mass 1,5. http://www.iso.org

12. A.V. Sachenko, A.I. Shkrebtii, R.M. Korkishko, V.P. Kostylyov, N.R. Kulish, I.O. Sokolovskyi, Features of photoconversion in highly efficient silicon solar cells. Semiconductors, 49(2), p. 264-269 (2015). https://doi.org/10.1134/S1063782615020189

13. A.P. Gorban, A.V. Sachenko, V.P. Kostylyov, N.A. Prima, Effect of excitons on photoconversion efficiency in the p+-n-n+- and n+-p-p+-structures based on single-crystalline silicon. Semiconductor Physics, Quantum Electronics and Optoelectronics, 3(3), p. 322 (2000).

14. A.V. Sachenko, A.P. Gorban, V.P. Kostylyov, I.O. Sokolovsky, The radiative recombination coefficient and the internal quantum yield of electroluminescence in silicon. Semiconductors, 40(8), p. 884-889 (2006). https://doi.org/10.1134/S1063782606080045

15. A. Hangleiter, R. Häcker, Enhancement of band-to-band Auger recombination by electron-hole correlations. Phys. Rev. Lett. 65(2), p. 215-218 (1990). https://doi.org/10.1103/PhysRevLett.65.215

16. http://solar-front.livejournal.com/11644.html

17. E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83, p. 614-624 (2009). https://doi.org/10.1016/j.solener.2008.10.008

18. V.N. Abakumov, V.I. Perel, I.N. Yassievich, Non-radiative Recombination in Semiconductors. Publ. House “Petersburg Institute of Nuclear Physics by name B.P. Konstantinov of RAN”, S-Petersburg, 1997 (in Russian).