Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 3. P. 324-329.
DOI: https://doi.org/10.15407/spqeo18.03.324


References

1. D. Kovalev, M. Ben Chorin, J. Diener et al., Porous Si anisotropy from photoluminescence polarization, Appl. Phys. Lett. 67, p. 1585-1587 (1995).
https://doi.org/10.1063/1.114947
 
2. G. Polisski, A.V. Andrianov, D. Kovalev and F. Koch, Light-stimulated anisotropy in porous silicon. Brazil. J. Phys. 26, p. 189-192 (1996).
 
3. J. Diener, D. Kovalev, G. Polisski, N. Künzner and F. Koch, Morphology of porous silicon layers deduced from polarization memory experiments. phys. status solidi (b), 224, p. 297-300 (2001).
 
4. B. Bruhn, J. Valenta and J. Linnros, Controlled fabrication of individual silicon quantum rods yielding high intensity, polarized light emission. Nanotechnology, 20, 505301 (2009).
https://doi.org/10.1088/0957-4484/20/50/505301
 
5. J. Valenta, R. Juhasz, J. Linnros, Photoluminescence from single silicon quantum dots at room temperature. J. Lumin. 98, p. 15-22 (2002).
https://doi.org/10.1016/S0022-2313(02)00246-6
 
6. I.Z. Indutnyi, E.V. Michailovska, P.E. Shepeliavyi, V.A. Dan'ko, Visible photoluminescence of selective etched porous nc-Si−SiOx structures. Fizika i Tekhnika Poluprovodnikov, 44, p. 218-221 (2010), in Russian.
 
7. K. Sato and K. Hirakuri, Improved luminescence intensity and stability of nanocrystalline silicon due to the passivation of nonluminescent states. J. Appl. Phys. 97(10), 104326 (2005).
https://doi.org/10.1063/1.1913796
 
8. V.A. Dan'ko, I.Z. Indutnyy, I.Y. Maidanchuk, V.I. Min'ko, P.E. Shepeliavyi, V.O. Yukhimchuk, Formation of the photoluminescence structure based on SiOx porous films. Optoelectronika i poluprovodnikovaya tekhnika, 39, p. 65-72 (2004) (in Ukrainian).
 
9. V.A. Dan'ko, V.Ya. Bratus', I.Z. Indutnyi, I.P. Lisovskyy, S.O. Zlobin, K.V. Michailovska, P.E. Shepeliavyi, Controlling the photolumi¬nescence spectra of porous nc-Si–SiOx structures by vapor treatment. Semiconductor Physics, Quantum Electronics & Optoelectronics, 13, p. 413-417 (2010).
 
10. J. Heitmann, F. Müller, M. Zacharias, U. Gösele, Silicon nanocrystals: Size matters. Adv. Mater. 17, p. 795-803 (2005).
https://doi.org/10.1002/adma.200401126
 
11. I.Z. Indutnyi, K.V. Michailovska, V.I. Min'ko, P.E. Shepeliavyi, Effect acetone vapor treatment on photoluminescence of porous nc-Si−SiOx nano-structures. Semiconductor Physics, Quantum Electronics & Optoelectronics, 12, p. 105-109 (2009).
 
12. M.V. Sopinskyy, I.Z. Indutnyi, K.V. Michailovska, P.E. Shepeliavyi, V.M. Tkach, Polarization conversion effect in obliquely deposited SiOx films. Semiconductor Physics, Quantum Electronics & Optoelectronics, 14, p. 273-278 (2011).
 
13. I.P. Lisovskyy, I.Z. Indutnyy, B.N. Gnennyy et al., Structural and phase changes in SiOx films under thermal vacuum treatments. Fizika i Tekhnika Poluprovodnikov 37, p. 98-103 (2003), in Russian.
 
14. W.H. Zheng, Jian-Bai Xiay and K W Cheahz, Linear polarization of photoluminescence in quantum wires. J. Phys.: Condens. Matter, 9, p. 5105-5116 (1997).
https://doi.org/10.1088/0953-8984/9/24/010
 
15. H.E. Ruda and A. Shik, Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B, 72, 115308-1−11 (2005).
https://doi.org/10.1103/PhysRevB.72.115308
 
16. Lei Fang, Xianwei Zhao, Yi-Hsin Chiu, Dongkyun Ko et al., Comprehensive control of optical polarization anisotropy in semiconducting nanowires. Appl. Phys. Lett. 99, p. 141101-1–141101-3 (2011).
https://doi.org/10.1063/1.3631630
 
17. C.Y. Ng, T.P. Chen, L. Ding, Y. Liu et al., Static dielectric constant of isolated silicon nanocrystals in a SiO2 thin film. Appl. Phys. Lett. 88, 063103 (2006).
https://doi.org/10.1063/1.2172009