Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 3. P. 349-353.
DOI: https://doi.org/10.15407/spqeo18.03.349


References

1. P.L. Neluba, Peculiarities of fullerenes condenŽsation from molecular beam in vacuum. TechnoŽlogia Konstruirovanie Electronnoi Apparature, 6, p. 35-39 (2011), in Russian.
 
2. E.F. Venger, L.A. Matveeva, P.L. Neluba, RadiaŽtion-stimulated effects in heterostructures with fullerenes. Optoelektronika i poluprovod. tekhnika, 46, p. 43-48 (2011), in Russian.
 
3. E.F. Venger, E.Yu. Kolyadina, L.A. Matveeva et al., Increase of thermal and radiation stability of solid heterosystems with C60 fullerene. Sbornik nauchnykh statey "Nanostructury v kondensirovanŽnykh sredakh", Minsk, NAS of Belarus, A.V. Luikov Heat and Mass Transfer Institute, p. 183-189 (2014), in Russian.
 
4. L.K. Narajanan, M. Jamaguchi, Photovoltaic effects of a:C/C60 /Si (p-i-n) solar cell structures. Solar energy materials and solar cells, 75, p. 345-350 (2003).
https://doi.org/10.1016/S0927-0248(02)00178-2
 
5. N.L. Dmitruk, O.Yu. Borkovskaya, L.A. Matveeva et al., Photoelectric properties of microrelief metal-semiconductor heterojunction with an intermediate layer of C60 fullerene. Sbornik nauchnykh statey "Nanostructury v kondensirovannykh sredakh", Minsk, NAS of Belarus, p. 3-9 (2008), in Russian.
 
6. E.F. Venger, T.I. Gorbanyuk, L.A. Matveeva, Fullerenes and sensors. 5th Intern. Sci. and Techn. Conf. "Sensors electronics and microsystems technology" (SEMST-5). Ukraine, Odessa, June 4-8, 2012, p. 35-36 (in Ukraine).
 
7. E.Yu. Kolyadina, L.A. Matveeva, P.L. Neluba, V.V. Shlapatskaya, Physical properties of C60 fullerene nanostructures. Mater. Sci. and Eng. Technol. 44, No 2-3, p. 144-149 (2013).
 
8. T.L. Makarova, Electrical and optical properties of pristine and polimerized fullerenes. Semicon-ductors, 35(3), p. 243-278 (2001).
https://doi.org/10.1134/1.1356145
 
9. N.L. Dmitruk, O.Yu. Borkovskaya, T.S. HavŽrylenko et al., Effect of chemical modification of thin C60 films on the fundamental absorption edge. Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(2), p. 180-185 (2010).
 
10. A.E. Belyaev, N.S. Boltovets, E.F. Venger, et al., Physico-technological Aspects of Degradation of Silicon Microwave Diodes. Kyiv, Academ-periodyka, 2011, Ch. 5, p. 60-66.
 
11. V.F. Mitin, V.K. Lazarjov, L. Lari, P.M. Lytvin, V.V. Kholevchuk, L.A. Matveeva, V.V. Mitin, E.F. Venger, Effect of film growth rate and thickness on properties of Ge/GaAs (100). Thin Solid Films, 550(1), p. 715-724 (2014).
https://doi.org/10.1016/j.tsf.2013.10.049
 
12. D.E. Aspnes, Third derivative modulation spectroscopy with low-field electroreflectance. Surf. Sci. 37. p. 418-442 (1973).
https://doi.org/10.1016/0039-6028(73)90337-3
 
13. R.V. Hoffman, Mechanical Properties of Thin Condense Films, Physics of Thin Films. Moscow, Mir, 3, p. 235-243.
 
14. T. Gotoh, S. Nonomura, H. Watanabe, S. Nitta, Temperature dependence of the optical-absorption edge in C60 films. Phys. Rev. B, 58(15), p. 10 060-10 063 (1998).
 
15. S. Saito, A. Oshiyama, Cohesive mechanism and energy band of solid C60. Phys. Rev. Lett. 66(20), p. 2637-2640 (1991).
https://doi.org/10.1103/PhysRevLett.66.2637
 
16. R.W. Lof, M.A. van Veenendaal, B. Koopmans, H.T. Jonkman, G.A. Sawatzky, Band gap, excitons, and Coulomb interaction in solid C60. Phys. Rev. Lett. 68(26), p. 3924-3927 (1992).
https://doi.org/10.1103/PhysRevLett.68.3924
 
17. M. Laštovičková, Some different in the exponential tail behaviour of the fundamental absorption edge in amorphous and crystalline materials. Czech. J. Phys. B, 22, p. 418-424 (1973).
https://doi.org/10.1007/BF01690703