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1. Introduction  

Exposure to electric, magnetic, electromagnetic, 
radiation, thermal as well as fields of mechanical 
stresses on materials of semiconductor products leads to 
a change in states of the ensembles of atoms, ions, 
capturing centers (traps), point and linear defects. 
Behavior of the mentioned ensembles in time is caused 
by the flow of random events in physical-chemical 
processes (hereinafter – random events or just events) 
such as motion of a particle or defect from the source to 
the defined boundary, changing the chemical structure of 
particle in chemical reactions, capture (release) of the 
carrier by center, generation of the defect, the decay of 
the interatomic bond in the mechanical destruction of 
solids, particle displacement during polarization of 
dielectrics. These events are random because at 
thermally activated (or thermal fluctuation) nature of the 
latter, they are determined by a random event such as 
fluctuation of a given energy of the particle of atom, ion, 

molecule. On the other hand, the law of distribution of 
the random variable – time to each of these events – 
depends on whether the activation energy of events is 
deterministic or random value for the entire set of 
events. In more detail, the reasons, for which the 
mentioned events are random, will be discussed during 
the presentation. 

Corresponding random events cause a change in 
time of the concentration inherent to reacting particles 
moving from the source to the defined boundary of 
particles or defects, filled (emptied) centers, 
generated defects, broken interatomic bonds, shifted 
particles, i.e. cause the flow of physical and chemical 
processes in materials of semiconductor products. 
Consequently, the mathematical description of 
random events will provide analytical expressions for 
the evolution kinetics of material parameters in 
semiconductor devices and structures under the action 
of corresponding fields or their termination, as well as 
under thermal aging.  
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2. Mathematical foundations of the analysis  
of random events in physical and chemical processes 

By analogy with the reliability theory, which use the 
term probability of failure of the product in time t, we 
write the expression for the probability of the absence of 
any of the events for the time t [1] 

∫λ−

=

t
dtt

etP 0

)(

)(  (1) 

where λ(t) is the intensity of the random events in 
physical and chemical processes (hereinafter the 

intensity of events), and, by definition, at t = 0 ( )dtt
t

∫λ
0

 

is equal to zero, while at t → ∞ it also tends to infinity. 
Then for the probability of the event before the 

time point t we have: 
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In other words, F(t) is the function of distribution 
of the random variable – time to any of random events, 
that is the time to: changes in the chemical structure of 
particle, motion of particle or defect from the source to 
the given boundary, capture (release) of the carrier by 
center, generation of defect, decay of interatomic bond, 
particle displacement.  

We interpret λ(t) in relation to consider random 
events. 

Similar term, but with another semantic content 
(failure intensity), is used in the reliability theory and is 
determined as follows [1] 
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where f (t) is the distribution density of time to the event 
(the probability density of the event). 

According to [1], 
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where n0 is the total number of events (in the physical 
and chemical processes, it can be arbitrarily large, but it 
is always limited by the number of particles, defects, 
centers; dttn )(Δ  is the number of events per unit of 
time; n(t) – number of events to the point time t. 

With regard to the physical and chemical processes, 
the formula (4), in view of the number of events per unit 
volume (normalization of the number of events to the 
volume of material) can be written as 

ttNN
tNt

Δ−
Δ

=λ
)]([

)()(
0
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The following defines the parameters in the 
formula (5) with respect to the above random events. 
1. A random event is the capture (release) of the 

carrier by center (trap); λ(t) is the intensity of the 
captures (releases) of carriers by centers; N0 is the 
total concentration of the centers; )()( ttN ΔΔ  is 
the concentration of centers that have captured 
(released) the carriers per unit of time (the rate of 
captures (releases) of carriers by the centers); N(t) 
is the concentration of filled (emptied) centers to 
the point time t. 

2. A random event – generation of a point (linear) 
defect: λ(t) is the intensity of generations of 
defects; N0 is the total (equilibrium) concentration 
(density) of defects; )()( ttN ΔΔ  is the concentra-
tion (density) of defects generated per unit of time 
(the rate of generation of defects); N(t) is the 
concentration (density) of the defects that have 
been generated to the point time t. 

3. A random event – decay of the interatomic bond in 
the mechanical destruction of solids: λ(t) is the 
intensity of decays of bonds; N0 is the total 
concentration of decaying bonds; )()( ttN ΔΔ  is 
the concentration of bonds decaying per unit of 
time (the rate of bond decay); N(t) is the 
concentration of bonds broken to the point time t. 

4. A random event – displacement of the particle 
under the dielectric polarization: λ(t) is the 
intensity of the displacements of particles; N0 is the 
total concentration of displacing particles; 

)()( ttN ΔΔ  is the concentration of particles, 
displaced per unit of time (the rate of particle dis-
placements); N(t) is the concentration of particles 
that have been displaced to the point time t. 
For t so small that )(0 tNN >> , the expression (5) 
transforms into 

)()()( 1
1

0
1

0 tN
t
tNNt υ=

Δ
Δ

=λ −− , (6) 

where )(1 tυ  is the rate of events. 
Thus, at low t, the event intensity is equal to the 
rate of events, normalized to the total concentration 
of particles, defects, centers etc. In the whole range 
of changing time, the behavior of )(tλ  and )(1 tυ  is 
fundamentally different. 

5. An event – motion of a particle from the constant 
source N0 (hereinafter – the source N0) to a 
reflective boundary x = x0 (hereinafter – boundary 
x0) is random if it is described by the Markov 
(random) process. For the Markov process, the 
conditional probability density of transition obeys 
the Fokker-Planck-Kolmogorov equation (diffusion 
equation). 
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In this case, λ(t) is the intensity of motions of 
particles from the source N0 to the boundary x0 in 
diffusion process; N0 is the total concentration of 
diffusing particles (concentration of the constant source); 

)()( ttN ΔΔ  – concentration of particles moving from 
the source N0 to the boundary x0 per unit of time (the rate 
of motions of particles from the source N0 to the 
boundary x0); N(t) – concentration of particles that have 
moved from the source N0 to the boundary x0 to the point 
time t. 

We divide the numerator and denominator of the 
formula (5) by N0 and multiply by x0 and introduce the 
notations 

0
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N
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=Δ .   (7) 

The value x(t) will designate the cumulated 
motions of particles from the source N0 to the boundary 
x0 for time t. Then the relation (5) can be written as: 
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where )()( ttx ΔΔ  is the cumulated motion of particles 
from the source N0 to the boundary x0 per unit of time 
(the velocity of cumulation of motions of particles from 
the source N0 to the boundary x0). 

For t so small that )(0 txx >> , the formula (8) is 
transformed into  
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1
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t
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where )(2 tυ  is the velocity of cumulation of events 
(velocity of cumulation of motions of particles from the 
source N0 to the boundary x0). 

Consequently, for the analyzed diffusion process, at 
low t, the intensity of events is equal to the velocity of 
cumulation of events, normalized to the distance x0. 

Considering the chemical transformations, we 
focus on solid-phase reactions (heterogeneous chemical 
processes) proceeding with formation and subsequent 
growth of new phase nuclei. Since, with respect to the 
solid-phase reactions, the random event is a change in 
the chemical structure of a particle, λ(t) is the intensity 
of changes in the chemical structure of particles; N0 – 
total concentration of reactive particles; )()( ttN ΔΔ  – 
the concentration of particles having reacted per unit of 
time (the rate of changes in the chemical structure of 
particles); N(t) – concentration of particles that having 
reacted to the point time t. 

Let’s divide the numerator and denominator of the 
formula (5) by N0 and multiply by V0 (V0 is the volume 
of the reaction zone). We introduce the notations 

0
0

)()(
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0
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Then the formula (5) can be written as: 
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0 ttVV
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Δ
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where V(t) is the volume (area or length) of a new phase 
formed to the point time t; ttV ΔΔ )(  is the volume of 
the new phase formed per unit of time (the growth 
velocity of a new phase). 

For t so small that )(0 tVV >> , the ratio (11) has 
the form 

)()()( 3
1

0
1
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Δ
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where )(3 tυ is the growth velocity of a new phase. 
For solid-phase reactions at low t, the intensity of 

events equal to the growth velocity of the new phase 
normalized to the volume (area, length) of the reaction 
zone. 

Since, by the definition F(t), 0)()( ntntF =  and 
therefore, 000 )()()()( VtVxtxNtNtF === , taking 
into account the expression (2) we can write 
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From the expressions (13)-(15), it follows that if ∞→t , 
the values N(t), x(t), V(t) asymptotically tend to the 
values N0, x0, V0. At low long-term physical and 

chemical processes, when ∫ <<λ
t

dtt
0

1)( , expanding the 

exponential in series and limiting by the first term of the 
expansion, we obtain 
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Differentiating on t the left and right side of equations 
(16)-(18), we have the following relations for 

)()()( 1
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These expressions are agreed with the above expressions 
(6), (9) and (12). 

This situation can be interpreted as follows. We 
introduce the term – the degree of completion of a 
physical or chemical process α (in heterogeneous 
chemical processes it is the conversion degree): 

000

)()()()(
V

tV
x

tx
N

tNt ===α . (22) 

The values of α range from zero to unity. Then it 
was at a low degree of completion of the process 
(conversion), when α << 1, and the relations (16)-(21) 
are valid. 

In its turn, change, which occurs in the parameters 
of materials and semiconductor products under the 
action of external fields and thermal aging, is 
proportional to N(t), x(t), and V(t). And, if at the initial 
point time the parameter y(t) have the value yin, when it 
grows over time, taking into account (13)-(15) we will 
have 
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where y0 is the asymptotically attainable value of 
inyty −)(  when ∞→t . 

When reducing the parameter in time, we get  
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where y0 is the asymptotically attainable value of 
)(tyyin −  when ∞→t . 

Let’s consider the special case of (24), when the 
parameter value reduces to zero. Taking into account 
that the condition 0)( =∞→ty  is satisfied when 

inyy =0 , we get 

∫λ−
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At low long-term physical and chemical processes, 

such that 1)(
0

<<λ∫
t

dtt  )1( <<α , according to (16)-(18), 

we obtain 
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Thus, the behavior of the parameters of materials of 
semiconductor devices and structures in time is 
determined by the form λ(t), which is related with the 
type of the used distribution F(t). In the probability 
theory, for approximation of distributions of selected 
data, different laws are applied, including the Weibull-
Gnedenko law, normal, log-normal ones etc. For the 
mathematical analysis of the above random events, we 
use the Weibull-Gnedenko distribution [1]. Let’s give a 
mathematical and physical basis of the applicability of 
this distribution, the function of which has the form: 

( )mt
etF τ−

−=1)( , (29) 

where m and τ are the distribution parameters (by 
definition F(t), m > 0) characterizing the intensity of the 
events. 

In accordance with (1)-(3), the expression for λ(t) 
has the form: 

1)( −

τ
=λ m

m tmt . (30) 

Hereinafter, we will refer to m a form factor of time 
distribution to a random event, and τ that is the scale 
parameter associated with the time constant of a random 
event. When t = τ, the probability of a random event is 

11 −− e , that is about 63% of the events. 
It is seen that at m = 1 the intensity of the events is 

constant, which is inversely proportional to the time of 
the event, and when at 1≠m  it changes with time 
according to a power law. 

The plots of the function (29) are shown in Fig. 1. 
It is necessary to point out three different types of 
behavior of the curves in the initial part of the changes in 
time: when 0 < m < 1, the curve is convex, when m > 1, 
it is concave and in general it has a sigmoid (S-shaped) 
form, but at m = 1 the curve is linear. 

The Weibull-Gnedenko distribution has the fol-
lowing important feature [2]. At m > 1, when 3 < m < 4, 
the Weibull-Gnedenko distribution is reduced to the 
normal one. The Weibull-Gnedenko distribution func-
tion is symmetrical at the point F(t) = 0.5, when 
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Dependence F(t) when m < 1 (1), m = 1 (2), and 
m > 1 (3). 
 
 
m = 3.26, that is ( ) 12ln1 −− , and the inflection point is 
only slowly changed with m. When 0 < m < 0.7, the 
Weibull-Gnedenko distribution is a normal logarithmic 
one. Finally, when m = 1 the Weibull-Gnedenko 
distribution transforms into exponential one.  

Let us analyze the physical and mathematical 
foundations of using the Weibull-Gnedenko law. 

Consider the thermal activated (random) events. 
For these events, the time constant τ is of the form: 

kT
E

e a
0τ=τ , (31) 

where τ0 is the pre-exponential factor that by the order of 
magnitude coincides with the period of the thermal 
vibrations of a particle; Ea – activation energy of random 
event; k – Boltzmann constant; T – absolute temperature. 

We assume that the activation energy for each 
event of the entire set of events has the same value Ea 
that is a determined value. In this case, the distribution 
function of time to the event should coincide with the 
distribution function of time to the energy fluctuation 
Efl = Ea of the particle (molecule, atom, ion). Really, the 
random variable – the time to the energy fluctuation of 
the particle – obeys the distribution [3] 

fl

t

etF τ
−

−=1)( , (32) 

where τfl is the average time between two successive 
fluctuations of the value Efl = Ea in a given particle, 
which is equal to [3] 

kT
E

e a
fl 0τ=τ . (33) 

It is seen that the distributions (29), with taking (31) into 
account, and (32) coincide at m = 1. Thus, the law (29) 
with m = 1 is a function of the distribution before 

thermal activated event, when the activation energy is a 
determined value. 

Let us now consider the situation where the 
activation energy of the event is a random variable for 
the entire set of events. 

The situation mathematically defined is reduced to 
the theorem by B.V. Gnedenko for limit distribution of 
the maximum and minimum value [1]. 

Consider the sequence of n distributed independent 
random variables nttt ,...,, 21  – times to the events with 
the activation energies anaa EEE ,...,21 , , where n is the 
number of events (the number of particles, defects, 
centers etc.). The distribution of each of the random 
variables nttt ,...,, 21  is the distribution (29) with m = 1, 
when Ea takes the values anaa EEE ,...,21 , . We form a 

new value nξ  that is equal ( )nn ttt ,...,,min 21=ξ , 
meaning by this the following: let the values nttt ,...,, 21  

took the values ∗∗∗
nttt ,...,, 21 , then for the nξ  value we 

will assign a value that is equal to ( )∗∗∗
nttt ,...,,min 21 . Let 

us find the distribution function, which is subject to the 
given value when n → ∞ (in practice at sufficiently  
large n). According to the B.V. Gnedenko theorem [1], 
the limit distribution of the third type of the minimum 
value is the Weibull-Gnedenko distribution. Thus, and it 
is especially necessary to emphasize, the Weibull-
Gnedenko distribution is the distribution of the random 
variable that is a minimum of a large number of 
independently operating variables. 

In the theorem, the distributions of random 
variables are assumed to be identical. However, even if 
there is a difference in the distributions of the given 
variables, this does not preclude the use of the Weibull-
Gnedenko law (29). For example, if the parameters of 
these distributions are different (in our case τ), then for 
sufficiently large n the distribution function still obeys 
the Weibull-Gnedenko law. 

In practice, and this will be discussed below, in 
some cases, for explaining experimental data one use 
representations of the distribution by a particular law of 
activation energy, and thus τ. Technically, it looks like 
that in the exponential distribution (distribution (29) 
with m = 1), the parameter τ is also assumed to be 
distributed. From the viewpoint of mathematical 
statistics, it is fundamentally wrong, because if the 
random variable (in our case – time to a random event) 
does not obey any given distribution, it is described by 
another distribution, which, as it was shown, is the 
Weibull-Gnedenko law. 

Therefore, the law (29) with 1≠m  is the 
distribution function of time to thermal activation event, 
when the activation energy of the event is a random 
variable. 

Note that in the distribution (29) with 1≠m  such a 
value τ will figure, and hence such a value Ea which is 
determined from the condition that when t = τ (34). 
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The event probability is 
11)( −−= etF , (35) 

that is, there is observed about 63% of the events. 
Replacing λ(t) to (30) in the formulas (13)-(15) and 

integrating, we obtain 
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and at t so small that ( ) 1<<τ mt , i.e., 1<<α  as a result 
of substituting (30) into (16)-(18) and subsequent 
integrating we will have 
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Substituting (30) into (23)-(25) and integrating, we 
obtain the following time dependences of changes in the 
parameters of materials of semiconductor products 
during physical and chemical processes 
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For small durations of processes ( ( ) 1<<τ mt , i.e. 
1<<α ), the substitution of (30) into (26)-(28), 

respectively, gives 
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In some cases, the time dependences (36)-(47) can 
be characterized by the presence of the incubation period 
t0, within which the physical and chemical processes 

does not yet started. In this situation, the expressions 
(36)-(47) is transformed by substituting t into 0tt − . 

Let’s apply these mathematical foundations for 
analyzing processes occurring in the materials of 
semiconductor products under the action of external 
fields and thermal aging. 

3. The model of a diffusion process 

Diffusion processes occurring in semiconductor 
materials, dielectric films on their surface, and in the 
contact connections are described by the diffusion 
equation. The particle concentration distribution N(t, x) 
is found by solving this equation for given initial and 
boundary conditions. In the case of diffusion from a 
constant source N0 into the body of finite size with a 
reflective boundary x0, a function obtained on the basis 
of this decision ( ) 0,)( NxtNtF =  at 0xx =  is the 
distribution function of time to motion of the particle 
from the source N0 to the boundary x0. 

It should be noted that the commonly defined 
boundary conditions imply a certain mathematical 
approximation of the real picture for process. So, the 
source profile of diffusing particles is not always fairly 
represented as a step function, as it can have a complex 
dependence on the coordinates. In its turn, the reflective 
boundary may also have a complex coordinate profile. 
The term “complex coordinate profile”, besides, implies 
that it (profile) may be a random function of the 
coordinates. 

Let in the material from the constant source N0 with 
a complex coordinate profile, the particles are 
transported to the boundary, where they cumulate 
(reflective boundary), and which also has a complex 
coordinate profile. In this case, the distance x0 from the 
source to the boundary is a random variable for the 
entire set of events – motions of particles from the 
source to the boundary. 

Consider the sequence of k independent random 
variables kttt ,...,, 21  – times to the motions of the 
particles from the constant source to the reflective 
boundary when x0 takes the values kxxx 00201 ,...,, . The 
distribution of each of the random variables kttt ,...,, 21  is 
the function ( ) 0,)( NxtNtF =  when 

kxxxx 00201 ,...,,= . We form a new value kξ , which is 
equal ( )kk ttt ,...,,min 21=ξ . As mentioned above, 
according to the B.V. Gnedenko theorem [1], the limit 
distribution of third type of the minimum term of the 
independent variables sequence is the Weibull-
Gnedenko one. 

Thus, the concentration of particles moving to the 
boundary to the point time t and the cumulated particle 
motions to the boundary to a given point time are subject 
to the relations (36), (37), (39) and (40). Accordingly, 
the behavior of the parameters of semiconductor 
structures is described by the expressions (42)-(47). 
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In these formulas, τ is the time constant of the 
motion of the particle from the constant source N0 to the 
reflective boundary, and m – form factor of time 
distribution before motion of a particle from the constant 
source N0 to the reflective boundary. 

Since τ2
0x  has a dimension of the diffusion 

coefficient D,  

D
x2

0=τ , (48) 

and, according to [4, 5] ( )kTEDD a−= exp0 , D0 is the 
pre-exponential factor. 

Then the corresponding summary of formulas (36), 
(37), (39), (40) and (42)-(47) is as follows: 
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and when ( ) 12
0 <<

m
xDt  ( )1<<α , 
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As x0 is a random variable, then its value appearing 
in the formulas (49)-(58) is determined from (48) under 

the condition that τ corresponds to that point time when 
according to (49) 

1

0
1)( −−=

τ e
N

N . (59) 

Similarly, one can use the formulas (51)-(53). 
We note when the form factor m is equal to 0.5, 

Eq. (55) does not depend on x0, which is typical for the 
diffusion of the particles from the constant source to the 
semi-infinite space. Indeed, in the model of diffusion 
from the constant source into semi-infinite space, time 
motion of concentrations of particles approximately 
equal N0 /2 has the form [4, 5]: 

Dttx =)( . (60) 
The classic example of applying these relations 

(49)-(58) will be given below in the section on thermally 
activated capture (release) of the carriers by centers. 

4. Thermally activated process of filling (emptying) 
center (traps) with carriers  

These processes occur in semiconductor structures under 
the influence of external fields, in particular an electric 
field. Electrons or ions are carriers that were captured or 
released by centers. 

The process of filling (emptying) of the center 
consists of two steps – motion of the carrier to the center 
or from it and properly capture (release) of the carrier by 
the center – and is determined by the slowest step. 

When the velocity of flowing process is determined 
by the capture (release) of the carrier by the trap, the 
probability of an event, that is, the time variation of the 
concentration of the filling (emptied) traps is described 
by the formulas (36) and (39), and behavior of 
semiconductor product parameters is subject to the 
relations (42)-(47). In these formulas, taking the 
analyzed situation into account, τ is a constant of time 
for capturing (releasing) the carrier by the trap (it has the 
form (31)), where Ea is the activation energy of capture 
(release) of the carrier by trap; τ0 is the pre-exponential 
factor, of the order of magnitude coinciding with the 
period of the thermal vibrations of the carrier, and m is a 
form factor of time distribution to capture (release) of 
carrier by the trap. When m = 1, the intensity of captures 
(releases) of carriers by the traps is constant, that is, 
there is a thermally activated capture (release) of carriers 
by the centers, when the activation energy of the event is 
a determined value. When 1≠m , the activation energy 
of thermally activated event is a random variable. The 
intensity of captures (releases) of the carriers by centers 
in the latter case is a power function of time. 

When the slowest step in the process is motion 
(diffusion) of a carrier to the center or from it, the time 
dependence of the concentration of filled (emptied) 
centers are given by the expressions (49) and (54), and 
behavior of the semiconductor structure parameters is 
described by the expressions (51)-(53) and (56)-(58). 
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To the analyzed class of processes, we relate the 
Hofstein model describing the transport of ions in the 
layers ‘metal-SiO2-Si’ [6]. It is based on the assumption 
of existence of the traps for ion charge at the interface 
metal-insulator. The release of ions from these traps is 
the slowest step in the process of charge transfer in MIS 
structure, determining the rate of charge cumulation in 
the dielectric-semiconductor interface. This model leads 
to the following dependence of the mirror charge in the 
semiconductor on time [6]: 

⎟
⎠
⎞

⎜
⎝
⎛ −= τ− t

s eQQ 10 , (61) 

where; ( )kTEaexp1−ν=τ , ν  is the frequency factor, 
Ea is the activation energy of releasing ions by the traps. 

The relation (61) is fully agreed with the relation 
(42) at yin = 0, y0 = Q0 and m = 1, that is, there is a 
constant intensity of releasing ions by the traps, and 
consequently, the activation energy of releasing ions by 
the traps is a determined value. 

Another good example of these processes is 
relaxation of the conductivity GΔ  of germanium due to 
the carrier trapping by slow centers in oxide, which, in 
some cases, is described by the empirical formula [7]: 

( ) 6.0

0
τ−Δ=Δ teGG , (62) 

and the τ temperature dependence corresponds to 
Eq. (48). 

When analyzing the formula (62), it is indicated the 
important role of diffusion phenomena in the process of 
filling the slow centers with carriers, that is, it was 
assumed that the velocity of flowing process of filling 
the center is determined by diffusion of the carrier to it. 

It was noted in [7] that the expansion (62) in series 
at small values of the argument gives the relaxation law 
in the form: 
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very close to the diffusion one 
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where x0 is the thickness of oxide film; D – effective 
diffusion coefficient of the carriers in the oxide 
compound film on the surface of germanium. 

Note that the expressions (62) and (63) are agreed 
with (53) and (58) ones when 0Gyin Δ=  and m = 0.6. 
The agreement with the above diffusion model can be 
explained by the fact that the reflective boundary, to 
which the carriers move from the source and which is 
formed by the slow centers, has a complex coordinate 
profile due to inhomogeneous distribution of slow 
centers in oxide. It drew attention to the latter 
circumstance in the work [7]. 

5. Heterogeneous chemical processes  
(solid phase reactions) 

The essence of heterogeneous chemical processes is 
formation of new phase nuclei and their subsequent 
growth [2, 8]. Nucleation is the process of forming the 
initial reaction interface, an important role in the course 
of which the lattice defects play. In its turn, the reaction 
interface is the area with a limited thickness equal to 
several lattice constants on both sides of the geometric 
contact surface. The reaction interface can be considered 
as a complex defect that partially cover reagent and is in 
a state of high reactivity, as preferential formation of the 
product occurs here. 

The velocity of running any solid phase reaction is 
determined by either a chemical reaction, i.e. one or 
more steps of redistribution bonds occurring generally at 
the reaction interface, or transport of particles involved 
in the reactions to the zone of preferential reaction or 
from it. Also, there are possible transition areas from one 
to another. 

Therefore, the growth of a new phase is caused by 
random events such as changes in the chemical structure 
of particles, which, according to the theory of absolute 
reaction rates, is thermally activated [2, 8, 9] (kinetic 
growth area), or the motion of particle from the source to 
the growing nucleus (diffusion growth area). 

For small duration of growth process of a new 
phase ( 1<<α ) when the relation (18) is valid, that is the 
effects of overlapping the growing nuclei and absorbing 
the formed nuclei by growing ones is not affected, the 
expression for the amount of the reacting substance V(t) 
has the form [2]: 

( ) ( ) j
tt

t

j

t

dt
dt
dNttVdttVtV

j=
⎟
⎠
⎞

⎜
⎝
⎛=λ= ∫∫

00
0 ,)( . (65) 

And, depending on what area of the new phase growth 
occurs, λ(t) is either the intensity of changes in the 
chemical structure of particles or the intensity of motion 
from the source to the growing nucleus; dN/dt is the 
velocity of nucleation depending on the nucleation law. 

The nucleus formed to the point time tj has the 
volume ( )jttV ,  to the point time t [2]: 

( ) ( )[ ]βσ= jj ttrttV ,, , (66) 

where β is the number of directions of an effective 
growth of nucleus (1, 2 or 3); σ is a factor taking into 
account the type and shape of the nucleus, and 

( ) ( )dttttr
t

t
j

j

∫υ=, , (67) 

where ( )tυ  is the velocity of nucleus growth. 
If the process of the nucleus growth occurs in the 

kinetic area (it is controlled by the process of chemical 
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transformation occurring at the reaction interface), ( )tυ  
is a constant, and the function ( )jttr ,  is proportional to 

jtt − . When the nucleus growth takes place in the 
diffusion area (it is controlled by the process of 
transferring substance), the function ( )jttr ,  is 

proportional to ( )[ ] 5.0
jttD − . 

Substituting (67) into (66) we have [2] 

( ) ( )p
j

p
ij ttkttV −σ=, , (68) 

where kj is the constant of the rate of the nucleus growth; 
p is the parameter, the values of which are presented in 
Table 1. 

The expression for V (t), and therefore, ( )dtt
t

∫λ
0

 

depends on the nucleation law. 
Let’s consider some of them [2, 8]. 
1. Instant nucleation. Nucleation occurs 

instantaneously at the time when appropriate 
experimental conditions are fulfilled 
when t = 0, N = 0; 
when t > 0, N = N0, (69) 
where N is the number of nuclei. 

This scenario of nucleation, for example, takes 
place, if the lattice structural defects or impurities are 
nuclei of a new phase. 

2. Nucleation with a constant rate 

tkN q= , (70) 

where kq is the constant of the rate for the nucleation 
process. 

3. Nucleation according to the power law  

qq
q tkN = . (71) 

This nucleation law is that the stable nuclei are 
formed as a result of flowing several (q) stages, unlike 
the previous case, when the nucleus appears during one 
stage. 

The results of integrating the expression (65) with 
account of (68)-(71) are shown in Table 2 [2] and 

indicate the power nature of the function ( )dtt
t

∫λ
0

. Thus, 

for solid-phase reactions the time distribution to the 
random event obeys the Weibull-Gnedenko law. 

Substituting the relations for ( )dtt
t

∫λ
0

 into Eqs. 

(15), (18), (23)-(28), for the time dependences of the 
cumulation of events (the volume of reacted substance) 
and parameters of semiconductor materials and 
structures, we get the expressions (38), (41), (42)-(47). 
In them, the form factor m of distribution of time to 

random event is determined by the values p and q, and 
the time constant of the random event τ depends on N0, 
V0, σ, Ap, Apq, ki, kq. 

Solid-phase reactions occur in solid solutions, 
which, for example, are the contacts of semiconductor 
devices and circuits. Thus, in [10] presented are the 
results of research of degradation processes in rectifying 
contacts of the structures ( ) Si-SiAl n−+  associated 
with reduction in the barrier height φb. It was noted that 
for small duration of thermal aging, it was proportional 
to t0.5, and with time increase the values of φb 
asymptotically approach to their minimum value. 

The authors [10] attributed this behavior of barrier 
height to the decay of the supersaturated solid solution 
Si in Al and subsequent diffusion of decay products. 

Assuming that the decay of the solid solution is 
accompanied with formation of a new phase by 
instantaneous nucleation and growth of one-dimensional 
nuclei occurring in the diffusion area, in accordance with 
Eq. (43), Tables 1 and 2, we have 

( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ τ−−ϕ−ϕ=ϕ 5.0

0 exp1 tinb . For small duration 

of thermal aging, according to Eq. (46), we obtain 
( ) 5.0

0 τϕ−ϕ=ϕ tinb . This presentation is agreed with 
the experimental data [10]. 

The work [5] shows the kinetics of decay inherent 
to solid solutions of lithium and copper in germanium. In 

the former case, the function ( )dtt
t

∫λ
0

 is proportional to 

t3/2, and it is assumed that the new phase nuclei appear 
due to entering the lithium ion from the interstitial into 
vacancy with formation of a complex ‘lithium-vacancy’. 
The decay rate is strongly dependent on the presence of 
dislocations and impurities in the crystal. For a solid 

solution of copper in germanium, the function ( )dtt
t

∫λ
0

  

 

Table 1. The value of parameter p. 

Model 
Control with 
processes at 
the interface 

Diffusion 
control 

one-dimensional nuclei 1 0.5 
two-dimensional nuclei 2 1 
three-dimensional nuclei 3 1.5 

Table 2. The expressions for the function ( )dtt
t

∫λ
0

. 

Law of nucleation Type of the function ( )dtt
t

∫λ
0

 

instant pp
i tkNV σ−

0
1

0  

with a constant rate 11
0

+− σ p
q

p
ip tkkAV  

by the power law qpq
q

p
ipq tkkAV +− σ1

0  
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is proportional to t, wherein the rate of the recovery of 
copper from a supersaturated solid solution with 
consequent formation of local cumulations also 
increased in the presence of dislocations. 

Since in both cases the impurities or lattice 
structural defects are nuclei of decay of solid solutions 
[5], which corresponds to the instantaneous nucleation 
scenario, then, in accordance with Tables 1 and 2, in the 
first case there was growth of three-dimensional nuclei, 
and in the second one – two-dimensional nuclei, which 
was limited by the diffusion process. 

Presented in the work [11] were the results of 
modeling processes in the aluminum metallization of 
semiconductor products in the presence of 
electrochemical corrosion and electromigration. These 
processes are accompanied by the appearance and 
growth in the metallization of nuclei of a new phase – 
oxide (hydroxide) of aluminum and voids that eventually 
leads to breakage of metal tracks [12, 13]. The run of 
these processes is estimated by changing in the 
resistance of aluminum tracks. 

Since for the failure of the semiconductor device or 
integrated circuit it is sufficient to break metallization 
only in one place and no need for its complete failure, it 
is possible to say that there is a situation with a low 
degree of conversion 1<<α  and, consequently, 
behavior of the resistance should be described by the 
expression (45). Indeed, as shown in [11], an increase of 
the resistance of metal tracks in time is described by the 
power functions of the form (45). Moreover, when 
electrochemical corrosion takes place, m = 1.5, which, in 
accordance with Tables 1 and 2 evidences the nucleation 
with the constant rate and diffusion control of their 
effective growth in one direction. When there is 
electromigration, m = 2.5, i.e. the law of nucleation is 
the power one with q = 2 and growth of one-dimensional 
nuclei takes place in the diffusion area. 

6. Generation of point defects  

Radiation and laser actions on semiconductor products 
give rise to point defects in materials, which are the 
vacancies and interstitial atoms [14-18]. The defects 
change the electrical properties of solids as a result of 
action of two mechanisms. The first one is related with 
formation of scattering centers for conduction electrons 
and is of essential importance for metals, and the second 
one – defects change the band structure. It is typical for 
semiconductors. The appearance in the band gap of the 
local levels (generation-recombination centers, capture 
centers) leads to a change in the number of charge 
carriers and their lifetime. 

An event – generation of a defect is random, as 
dissipation of the energy of particles and radiation 
quanta in solids is a random process, caused by the non-
uniform distribution of irradiation energy along the 
particle trajectory transferred to the solid. The result is a 
distribution of time before transferring to atom (ion) 

located at the crystal lattice the energy, equal to the 
potential barrier height transition into the interstitial, i.e. 
the time distribution before generation of defect. 

The function of time distribution to a random event 
determines variation in time of the concentration of 
generated defects, which is described by the formulas 
(36) and (39) and leads to a change in the parameters of 
materials and semiconductor devices. Summarizing the 
formulas that obey the kinetics of these changes has the 
forms (42)-(47). In the relations (36), (39), (42)-(47), τ is 
the time constant for generations of defects, m – form 
factor of distribution of time before generation of defect. 
If m = 1, the intensity of generations of defects is a 
constant, and when 1≠m  it changes in time according 
to a power law. 

Presented in [15] are the results of the irradiation 
impact on the electrical resistance of metals and alloys. 
The time dependences of electrical resistance growth are 
characterized by non-linear behavior for small durations 
of irradiation and limit of saturation with increasing time 
( 1≠m  in Eqs. (42) and (45)). In some cases, there was 
observed a linear increase in the electrical resistance at 
the early stages of irradiation, indicating a constant 
intensity of generations of defects (m = 1). 

The effect of various types of irradiations (γ-
irradiation, electron, proton, neutron ones) on the 
parameters of silicon and germanium semiconductor 
devices is quite sufficiently systematized in [16]. Let us 
analyze the studies cited therein. Pre-make the following 
remark. The work [16] shows the dependences of the 
parameters of materials and devices on the integral flux 
of radiation Φ and the dose P that are linear functions of 
irradiation time. 

There was a linear relationship between the change 
in the inverse value of the minority carrier lifetime 
( )τΔ 1  in silicon and germanium for one dominant 

recombination center and the integral flux of irradiation 
(neutrons, electrons, γ-quanta) at low Φ: ( ) Ô1 τ=τΔ K , 
where Kτ is the coefficient of radiation change in the 
lifetime. This relationship is agreed with Eq. (45) in 
assuming constancy of the intensity of generations of 
defects (m = 1). 

Behavior of the electrical resistivity of silicon and 
germanium in the absence of inversion of the 
conductivity type under condition of neutron irradiation 
in a certain range Φ is described by the relation 

( )Φρ=ρ ρKexp0 , where 0ρ  is the ρ value before irra-
diation; Kρ is the coefficient of radiation changes in the 
resistivity. Accordingly, for electrical conductivity we 
have ( )Φ−ρ=σ ρ

− Kexp1
0 , which follows from Eq. (44) 

at constancy of the intensity of generations of defects 
(m = 1). 

Changing in the reciprocal static current transfer 
ratio in common-emitter circuit ( )Eh211Δ  in silicon 
planar and germanium diffused transistors irradiated 
with neutrons at low Φ values when defect formation 
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occurs inside the semiconductor bulk is proportional to 
Φ, which agrees with (45) at m = 1. 

Analysis of behavior inherent to silicon and 
germanium transistors of small and medium power 
(fused and planar) under electron, neutron, proton, and 
γ-quanta irradiation evidences that for large Φ deviation 
from linearity is observed, as indicated by Eq. (42). 

In the study of the influence of surface effects on 
the change Eh211 due to the generation of surface 
recombination centers and space charge in the oxide film 
under proton, electron, and γ-radiation, the parameter 
characterizing the magnitude of changes in the surface 
recombination losses was introduced. Numerically, it is 
equal to the difference between ( )Eh211Δ  and the value 
of change in the bulk recombination losses. For this 
parameter, the relationship 

( )[ ]Φ−−Δ=Δ SsatSS KRR exp1  was proposed; here 

satSRΔ  is the SRΔ  value at saturation; KS is the 
coefficient characterizing the rate of reaching saturation 

SRΔ . The noted dependence is fully consistent with the 
dependence (42), if assuming constancy of the intensity 
of generations of defects (m = 1). 

Analysis of the effect of electron, proton and 
neutron irradiation of powerful microwave transistors 
showed that a change in the critical current matching to 
the drop of maximum value of cutoff frequency for 
current transfer ratio by 3 dB is described by the 
expression: ( )Φ−= ρρρ KII kk exp0  which at 1<<ΦρK  
transfers to ( )Φ−= ρρρ KII kk 10 , where 0ρkI  is the initial 
value of ρkI  before irradiation; ρK  is the coefficient of 
changes in the resistivity of the epitaxial layer of the 
collector. These expressions are agreed with Eqs. (44) 
and (47) at m = 1. 

Impact of fast neutrons on unipolar transistors with 
a gate in the form of p-n transition was estimated by 
changing the parameters such as the cutoff voltage 
UGS cut (voltage at which the channel is overlapped), 
slope S, the initial drain current ID in (drain current at zero 
voltage between the gate and source). There were 
obtained the following relationships between these 
parameters and the integral flux: 

( )Φ−= ρKUU cutGScutGS exp0 , ( )Φ−= ρKSS exp0 , 

( )Φ−= ρKII inDinD 2exp0 , where UGS cut, S0, ID in0 are 
the initial values of these parameters before irradiation, 
respectively; ρK  is the average coefficient of radiation 
changes in resistivity of the channel. These dependences 
are a consequence of Eq. (44) at constancy of the 
intensity of generations of defects. 

Under γ-quanta irradiation of metal-insulator-
semiconductor structures, it was noted that the density of 
the space charge generated in the dielectric layer was 
nonlinearly changed and confined to the saturation limit. 
Also, kinetics of changes in the threshold voltage of the 

radiation dose properly behaved, which is agreed with 
the expression (42). 

Neutron and γ-quanta irradiation of silicon diodes 
leads to the following dependence of the reciprocal of 
the carrier lifetime in the base on the integral flux: 

Φ=τ τKp1 , where Kτ is the coefficient of radiation 
changes in lifetime τp (the expression (45) with m = 1). 

The work [17] shows the kinetics of changes in the 
surface recombination velocity GaAs depending on the 
number of laser pulses, causing formation of defects in 
the material, which are responsible for the generation-
recombination processes. This dependence has S-shaped 
configuration, that is it obeys the expression (42) with 
m > 1. 

Indeed, it is rectified in the coordinates 

( )[ ]{ }1
01lnln −−− rinrr SSS  and ( )0ln pp NN − ,  

where Sr is the surface recombination velocity; Sr in – 
initial value of Sr; Np – number of laser pulses; Np0 – 
threshold number of pulses that does not change the 
surface recombination velocity ( 20 ≈pN ). Here, tangent 
of the angle of slope of the line is of the order of 

5.2≈m . Thus, there is the intensity of generations of 
defects increasing with the number of pulses. 

7. Formation of point defect clusters 

Under the influence of radiation and in operating the 
micro- and nanoelectronic devices, effects of formation 
of point defects clusters are observed in semiconductor 
materials [14-16, 18]. The cluster nucleation occurs 
when two identical moving point defects meet together 
and form a fixed nucleus, on which another defects of 
the same type are condensed [14]. The impurity atoms 
and dislocations are also nuclei of clusters. In the latter 
case, the increased equilibrium concentration of point 
defects near dislocations increases the probability of 
local nucleation [14]. 

Formation of point defect clusters until the 
appearance of microinclusions was observed in 
semiconductor structures based on GaAs after their 
production as a result of evolution of a non-equilibrium 
state of defects into the equilibrium one [19]. 

Since formation of point defect clusters is under the 
scenario of solid state reactions, that is under the scheme 
‘nucleation – growth’ of nuclei, for its description to 
attract the mathematical apparatus of heterogeneous 
reactions is appropriate. The diffusion rate of defects is 
determined by the step of clusters growth. 

Accordingly, the random event is defect motion 
from the source of the nucleation cluster. The probability 
of this event determines the growth in time of cluster 
volume that obeys the formulas (38) and (41), where τ is 
the time constant of a random event, and m is the form 
factor of time distribution before motion of the defect 
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from the source to the nucleus. The data for these 
parameters are presented in Tables 1 and 2. 

8. Generation of dislocations  

Relaxation of mechanical stresses in the semiconductor 
products is accompanied with plastic deformation of the 
crystal through the mechanism of multiplication of 
dislocations. The mechanism of a long-term dislocation 
generation is, for example, the Frank-Read source  
[20, 21]. 

Practically all the crystals contain a certain amount 
of growth dislocations being intersected with each other 
form a three-dimensional grid. Frank and Reed presented 
the source as a moving segment of the dislocation line, 
which was mounted on the ends by the fixed points that 
are the intersection of dislocations. Also, the segregated 
and impurity atoms as well as fixed (sessile) dislocations 
can operate as the anchor points. When stresses are 
applied, the dislocation segment moves in the slip plane, 
but being fixed at the ends, it is bent, and if the stresses 
are above the critical (when the segment takes the form 
of a semicircle), the result is the formation of dislocation 
loop that continues to expand in its slip plane. At the 
same time, the initial segment restores and the whole 
process begins again. Slipping may occur under the 
influence of small stresses, at low temperatures and so 
fastly that diffusion in this case is inessential. 

Another mechanism for generation of the 
dislocations was proposed by Bardeen and Hering [20]. 
It is based on the motion of the edge dislocation fixed at 
both ends, crawling over in a plane perpendicular to the 
Burgers vector. Generation of dislocation rings occurs 
similarly to the mechanism by Frank-Read and depends 
on the concentration of vacancies or on adding 
(removing) atoms from the crystal plane (planes). Such 
dislocation motion is solely due to diffusion motion of 
vacancies or atoms. 

Thus, the distribution of the random variable – the 
time before generation of a dislocation loop (hereinafter 
– dislocation) – is caused by the distribution in time 
before motion of atom (vacancy) from the source to the 
dislocation segment when generating the dislocations by 
the diffusion mechanism or the distribution in time 
before the displacement of atom from the equilibrium 
position and bond redistribution when generating 
dislocation by slipping mechanism. The latter random 
event is complex and consists of a thermally activated 
event (appearance of a nucleus with double bend) and 
thermally activated event (expansion of double bend in 
both sides along the dislocation line). It should be noted 
that the activation energy of the appearance of a nucleus 
with double bend is sufficiently higher than that of bend 
expansion [3]. 

In general, semiconductor device materials are 
characterized by a large number of dislocation sources, 
for which the length of dislocation segment d is a 
random variable. From a mathematical viewpoint, it 

means that there is a sequence of n distributed random 
variables nttt ,...,, 21  – the times before the generation of 
dislocations, when the length of dislocation segments of 
the total set of dislocation sources with the number n has 
the values nddd ,...,, 21 , respectively. We form a new 
value that is equal to ( )nttt ,...,,min 21 . Then, according to 
the B.V. Gnedenko theorem [1], the limit distribution of 
the third type of this value is the Weibull-Gnedenko one. 

Similar, in mathematical terms, situation arises 
even if the for the total set of the dislocation sources the 
length of dislocation segment is a determined value, but 
they (dislocation segments) are under various stresses σ 
due to their non-uniform distribution in the 
semiconductor structure. Then, σ is the random variable. 
Accordingly, we have a sequence of n distributed 
independent random variables nttt ,...,, 21  – the times 
before generation of dislocations, when the mechanical 
stresses with values nσσσ ,...,, 21  act on the dislocation 
segments of the total set n of dislocation sources, 
respectively. Therefore, the limit distribution of the third 
type value equal to ( )nttt ,...,,min 21  is the Weibull-
Gnedenko distribution. 

With the passage of time due to the blocking effect 
of the elastic strain fields on the sources of dislocation 
loops they stop functioning. 

The distribution function in time before generation 
of dislocation determines the change in time of the 
dislocation density in semiconductor materials, which is 
described by the formulas (36), (39) and leads, in 
accordance with (42)-(47), to changes in the parameters 
of semiconductor devices. In this case, τ is the constant 
in time of generation of dislocation, and m is form factor 
of time distribution before generating dislocation. The 
permanent intensity of generations of dislocations takes 
place at m = 1, and when 1≠m  it depends on the time. 

The work [20] shows the time dependence of 
deformation of Ge and Si at relatively low stresses in the 
nonlinear (inelastic) area. The increase in deformation 
values over time is caused by the process of generating 
dislocations. These dependences are of S-shaped form 
and are described by Eq. (42) with m > 1. 

We note that Eq. (43) is agreed with the results of 
studying slow degradation of the effective emission from 
LEDs based on GaP caused by the increase in time of 
extended non-emitting areas – defects in dark lines that 
are identified as dislocations. These experimental data 
based on the analysis of literature sources are presented 
in the work [22]. And as it follows from the course of 
the time dependence of the effective emission, m is 
higher than unity. 

9. Mechanical destruction of solids 

Destruction of solids under the influence of mechanical 
stresses is caused by the birth and growth of cracks in 
them. The essence of the destruction is sequential decay 
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of strained interatomic bonds caused by thermal 
fluctuations [3]. 

Changes in the concentration of molecular products 
of decay of interatomic bonds in time is determined by 
the probability of a random event – the decay of the 
interatomic bond – and is described by the expressions 
(36) and (39), where τ is the constant of time of decay of 
the interatomic bond, which is equal to [3] 

( )
⎥⎦
⎤

⎢⎣
⎡ γσ−

τ=τ kT
U

e
0

0 . (72) 

Here, τ0 is the pre-exponential factor that by the order of 
magnitude coincides with the period of the thermal 
vibrations in the particle; U0 – initial value of the 
activation energy of the interatomic bond; γ – coefficient 
characterizing the strength properties of solids; σ – 
mechanical stresses, and m – form factor of the function 
of time distribution before the bond decay. 

When m = 1 (constant intensity of decays of 
interatomic bonds), there is thermally activated decay of 
interatomic bonds when the activation energy of the 
bond decay is a determined value. If 1≠m , there 
observed is the thermofluctuational decay of interatomic 
bonds, when the activation energy of the event is a 
random variable. 

The authors of the work [3] showed that the 
kinetics of cumulation of molecular interatomic bond 
decay products (stable end groups and stable radicals) in 
polymers under mechanical stresses can be 
approximated using the expressions (36), (39) at m = 1 
and more complex dependences ( 1≠m ). In this case, in 
[3] the attention was paid to the fact that the situation 
with m = 1 (constant intensity of decays of interatomic 
bonds) can be observed only when all the particles and 
events occurring with them are the same, that is, all acts 
occur with the same activation energy (activation energy 
of interatomic bond decay – determined value). If the 
particles of different types in the system are mixed, their 
decay occurs with different activation energies 
(activation energy of interatomic bond decay – a random 
variable), then 1≠m . 

The latter situation, as pointed in [3], is caused by 
the fact that a random variable is the stress in the 
interatomic bond. Indeed, according to Eq. (72), 

γσ−= 0UEa , and therefore, if σ is the random variable, 
then Ea is also a random variable. 

In this case, the particles are non-identical with 
respect to their ability to decay: in one particles – the 
activation energy is lower (where tensile forces are 
greater), in others – higher. In this sense, the loaded ma-
terial is a system of a mixture of “unequal” particles, i.e. 
particles with different activation energies of their decay. 

In crystalline solids, thermofluctuational decay of 
strained interatomic bonds is most adequately described 
with the assistance of dislocation models [3]. When 
cumulating the random events – generation of 
dislocations under the influence of mechanical stresses –

their clusters arise and appearance of microcracks 
becomes possible. So, if the number of similar 
dislocations is stopped by obstacle, the large overstresses 
near the leading dislocation are the cause of the random 
event – thermal activated decay of the interatomic bond, 
and hence, formation of the microcrack. In the basis of 
microcrack formation, there may be a thermally 
activation event – appearance of the double bend nucleus 
in the dislocation with following merger of this bend and 
then of whole dislocation through the thermally 
activated event – expansion of the double bend in both 
sides along the dislocation line with neighboring 
dislocation. After microcrack formation, the cumulated 
dislocations due to the flow of the random events – 
thermofluctuation pushings – begin gradually to go into 
it. Since when growing the cracks, the blocked 
dislocation sources are released and begin to operate, the 
process of crack growth is accompanied by plastic 
deformation. 

The crack development itself is jump-like. Each 
jump in the slip plane, which feed the crack, 
redistributes stresses, which followed by a flow of 
random events – thermofluctuation pushings of disloca-
tions into the cracks. When the crack reaches the neigh-
boring slip plane, its growth slows down, and then after 
the jump-like transition of the crack peak through the 
slip plane into the stretched area of the crystal, the 
growth of the crack again accelerates, and the 
development of the process is again repeated. 

Since in the described scenario of strained 
interatomic bonds decay in crystalline solids, the random 
event – the interatomic bond decay – is caused by the 
random event – generation of dislocations, the increase 
of the concentration of broken bonds in time is again 
described by the expressions (36) and (39). 

10. Polarization of dielectrics 

Under polarization, we understood displacement of 
charged particles under the influence of an external 
electric field, leading to the appearance of the electric 
moment. In polarization, electrons, ions, dipoles can 
participate. The mechanism of setting the polarization 
can be deformation, relaxation (through thermal 
fluctuations), migration one [23, 24]. 

Hereinafter, we will consider the relaxation 
polarization. The change in time of the concentration of 
displaced particles (relaxators) under the influence of an 
electric field is determined by the probability of 
thermally activated event – particle displacement – and 
is described by the expressions (36) and (39), where τ is 
the time constant of displacement of particle (relaxator), 
and m is the form factor of the function of time 
distribution before displacement of the particle 
(relaxator). 

When m = 1, the intensity of the displacements of 
particles is constant, that is, the activation energy of the 
random event – thermally activated particle 
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displacement – is a determined value. When 1≠m , the 
activation energy of thermally activated event is a 
random variable. 

Consequently, the process of setting polarization in 
dielectrics is described by the expression (42), here 
( ) ( )tPty = , 0=iny , y0 = P0, where P(t) is polarizability; 

P0 is steady value of polarizability, that is, 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= τ−

mt
ePtP 10 . (73) 

Formula (73) with m = 1 (constant intensity of the 
displacements of particles) transforms into the well-
known relation for setting relaxation polarization under 
electric field [23, 24] 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −= τ

−t
ePtP 10 , (74) 

and, when switching off the electric field in dielectrics 
with steady polarizability, the time kinetics, according to 
(44) with m = 1, has the form [24] 

( ) τ−
=

t
ePtP 0 , (75) 

where kTUexp1−ν=τ ; U is the height of the potential 
barrier that is overcome by the particle during relaxation 
(activation energy of the particle displacement); ν is the 
frequency factor that by the order of magnitude 
coincides with the frequency of the particle thermal 
vibrations. 

The analysis of different material dielectric spectra 
based on the Cole-Cole diagrams shows their deviations 
from the semicircle (blurring of the spectrum dispersion) 
[24], that is, from the regularities predicted by the 
formulas (74) and (75), which led to the need to make 
assumptions about the distribution of relaxators [24]. So, 
in [24] a normal (Gaussian) distribution for the heights 
of the potential barrier that is overcome by particles 
during relaxation was used. 

As already mentioned, technically it looks like that 
in the exponential distribution (the distribution (29) with 
m = 1), which is the basis of Eqs. (74) and (75), the 
parameter τ is also assumed to be distributed. From the 
viewpoint of mathematical statistics, it is fundamentally 
wrong, as if the random variable (in our case – time to 
the particle displacement) does not obey any one 
distribution, it is approximated by the other distribution. 
In this situation, it is the Weibull-Gnedenko distribution 
and, accordingly, the expression for finding P(t) has the 
form (73). 

It should be noted that a similar pattern was also 
observed when analyzing thermally stimulated current 
relaxation, whereas for explanation of the obtained 
results, attracted was the presentation about the 
distribution of electrically active defects by the 
activation energy and frequency factor [25], which is 
characterized by a marked disadvantage. 

11. Conclusions 

Thus, the physical and chemical processes occurring in 
the materials of semiconductor products under the 
influence of external fields and thermal aging are caused 
by corresponding random (thermofluctuation) events. 
Time regularities of processes are determined by the 
distribution function of the random variable – the time to 
a random event. It is shown that as the given random 
variable is the minimum of the large number of 
independent operating quantities, then such distribution 
is the Weibull-Gnedenko one. For thermally activated 
events, when the activation energy of the event is the 
determined value, the form factor of Weibull-Gnedenko 
distribution is equal to unity, and it turns into an 
exponential distribution. In a general case, if the 
activation energy of the event is random variable, the 
form factor is not equal to unity. This presentation 
allowed from uniform (probability) positions to give a 
mathematical description of the time evolution of a 
number of physical and chemical processes. Proposed is 
the mathematical model of the flowing diffusion when 
the profiles of source of diffusing particles and 
boundary, to which they move, are not a step function, 
but have a complex dependence on coordinates, i.e. are a 
random function of the coordinates. Presented were the 
analytical expressions for evolution of the parameters of 
materials and semiconductor products in the thermally 
activated process of filling (emptying) of traps (center) 
with carriers, mechanical destruction of solids, 
relaxation polarization of dielectrics in the situations 
where the activation energy of a random event is a 
determined and random variable. Described were of the 
development in time of the processes of generation of 
linear defects – dislocations provided that the length of 
dislocation segment or the value of acting on it 
mechanical stress is a random variable. With the 
proposed position, the analyzing were flowing 
heterogeneous chemical processes (solid-state reactions), 
the essence of which is formation and growth of nuclei 
from a new phase. The resulting expressions for the time 
kinetics coincide with those obtained in other ways, 
which take into account the effects of overlapping 
inherent to growing nuclei and absorption of the creating 
nuclei by growing ones. The work presents the analytical 
relations for the time dependences for behavior of the 
material and semiconductor device parameters, when 
point defects are generated under the influence of 
irradiation. Quite extensive analysis of various literature 
sources has shown agreement of the obtained theoretical 
results with the experimental data. 
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