Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N2. P. 229-247.
2. W. Shockley and H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells . J. Appl. Phys. 32(3), p. 510-519 (1961). https://doi.org/10.1063/1.1736034 3. M.A. Green, K. Emery, Y. Hishikawa, W. Warta and E.D. Dunlop, Solar cell efficiency tables (version 43) . Prog. Photovolt.: Res. Appl. 22(1), p. 1-9 (2014). https://doi.org/10.1002/pip.2452 4. J.F Geisz, S. Kurtz, M.W. Wanlass, J.S. Ward, A. Duda, D.J. Friedman, J.M. Olson, W.E. McMahon, T.E. Moriarty, J.T. Kiehl, High-efficiency GaInP. GaAs. InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction . Appl. Phys. Lett. 91, No.2, p. 023502 (2007). https://doi.org/10.1063/1.2753729 5. L. Mearian, New solar cell sets world record, focusing the power of 297 suns . News 6. A.V. Sachenko, M.R. Kulish, I.O. Sokolovskyi, V.P. Kostylyov, Lateral multijunction photovoltaic cells . Semiconductor Physics, Quantum Electronics & Optoelectronics, 16, No.1, p. 1-17 (2013). https://doi.org/10.15407/spqeo16.01.001 7. M.A. Green and A. Ho-Baillie, Forty three per cent composite split-spectrum concentrator solar cell efficiency . Prog. Photovolt.: Res. Appl. 18, p. 42-47 (2010). https://doi.org/10.1002/pip.924 8. Lo Chin Kim, Simulation and construction of luminescent solar concentrator . A master thesis submitted to the Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, University Tunku Abdul Rahman, in partial fulfillment of the requirements for the degree of Master of Engineering Science, November 2011, p. 1-262. 9. J.C. Goldschmidt, Novel solar cell concepts . Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fachbereich Physik, Fraunhofer Institut für Solare Energiesysteme (ISE), Freiburg, September 2009, p. 1-280. 10. L.H. Slooff, E.E. Bende, A.R. Burgers, T. Budel, M. Pravettoni, R.P. Kenny, E.D. Dunlop, A. Buechtemann, A luminescent solar concentrator with 7.1% power conversion efficiency . Physica Status Solidi (RRL), 2(6), p. 257-259 (2008). https://doi.org/10.1002/pssr.200802186 11. J. Gutmann, M. Peters, B. Bläsi, M. Hermle, A. Gombert, H. Zappe, J.C. Goldschmidt, Electromagnetic simulations of a photonic luminescent solar concentrator . Opt. Exp. 20, No. S2, p. A157-A167 (2012). https://doi.org/10.1364/OE.20.00A157 12. T.J.J. Meyer, Photon Transport in Fluorescent Solar Collectors . Doctoral Thesis, University of Southampton, School of Engineering Sciences, 2010. 13. G. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals. Interscience Publ., New York, 1968. 14. L.R. Wilson, Luminescent Solar Concentrators: A Study of Optical Properties, Re-absorption and Device Optimization . Doctor of Philosophy. Department of Mechanical Engineering School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom, May 2010. 15. A.K. Gupta and S.K. Ujjwal, Optical absorption spectra of rare earth elements with amino acid in different solvents . Adv. in Appl. Sci. Res. 4(3), p. 33-38 (2013). 16. A.K. Gupta, and S.K. Ujjwal, Absorption spectra of praseodymium with amino acid . Res. J. Phys. Sci. 1(4), p. 7-10 (May 2013). 17. R. Van Deun, P. Fias, P. Nockemann, K. Van Hecke, L. Van Meervelt, and K. Binnemans, Visible-light-sensitized near-infrared luminescence from rare-earth complexes of the 9-hydro-xyphenalen-1-one ligand . Inorg. Chem. 45, p.10416-10418 (2006). https://doi.org/10.1021/ic0616277 18. K. Binnemans, P. Lenaerts, K. Driesen and C. Gorller-Walrand, A luminescent tris(2-thenoyltrifluoroacetonato)europium(III) complex covalently linked to a 1,10-phenan-throlinefunctionalised sol–gel glass . J. Mater. Chem. 14, p. 191-195 (2004). https://doi.org/10.1039/B311128H 19. X. Zhang, S. Wen, S. Hu, L. Zhang, L. Li, Electrospinning preparation and luminescence properties of Eu(TTA)3phen. polystyrene composite nanofibers . J. Rare Earths, 28, No. 3, p. 333-339 (June 2010). https://doi.org/10.1016/S1002-0721(09)60108-3 20. T. Förster, Intermolecular energy migration and fluorescence . Ann. Phys. 2, p. 55-75 (1948). https://doi.org/10.1002/andp.19484370105 21. D.L. Dexter, Theory of optical properties of imperfections in nonmetals . Solid State Phys. 6 (Eds. F. Seitz and D. Turnbull), p. 353-411 (1958), Academic Press. 22. J.-C.G. Bünzli, S.V. Eliseeva, Lanthanide NIR luminescence for telecommunications, bioanalyses and solar. Review . J. Rare Earths, 28, No. 6, p. 824-842 (Dec. 2010). https://doi.org/10.1016/S1002-0721(09)60208-8 23. J.-C.G. Bünzli and A.-S. Chauvin, Lanthanides in solar energy conversion. In: Handbook on the Physics and Chemistry of Rare Earths, Eds. J.-C.G. Bünzli and V.K. Pecharsky, Vol. 44. Amsterdam, The Netherlands, 2014, p. 169-281. https://doi.org/10.1016/b978-0-444-62711-7.00261-9 24. J.S. Batchelder, The luminescent solar concentrator . Thesis for the degree doctor of philosophy. California Institute of Technology, Pasadena, California, 1982, p. 1-287. 25. Catalogue of Active Laser Media Based on Solutions of Organic Dyes and Related Compounds, Ed. V.I. Stepanov. Institute of Physics of Academy of Sciences of Byelorussian SSR, Minsk, 1977 (in Russian). 26. Mono Crystalline Silicon PV Module SF-125×125-72-M. L. D . Zhejiang Sunflower Light Energy Science & Technology Co. Ltd. www.sunowe.com; Monocrystalline Silicon Solar Module . Eoplly New Energy Technology Co., Ltd www.eoplly.com; Supplementary Warranties Applicable to Bosch Solar c-Si Series of Photovoltaic Modules Supplied by Robert Bosch (Australia) Pty Ltd in Australia after 1st January 2012 . www.bosch-solarenergy.com.au. 27. N.R. Kulish, V.P. Kunets, M.P. Lisitsa, N.I. Malysh, Evolution of absorption spectra when transferring from bulk to quantum-sized crystals CdSXSe1-X . Ukrainskii Fizicheskii Zhurnal, 37, N 8, p. 1141-1146 (1992), in Russian. 28. N.R. Kulish, V.P. Kunets, M.P. Lisitsa, Optical properties of quasi-zero-dimensional CdSXSe1-X crystallites grown in a glass matrix . Opt. Eng. 34, No. 4, p. 1054-1071 (1995). https://doi.org/10.1117/12.197099 29. S. Flügge, Practical Quantum Mechanics. Springer-Verlag, Berlin – Heidelberg, 1999. 30. A.L. Efros and A.L. Efros, Interband light absorption in semiconductor sphere . Fizika tekhnika poluprovodnikov, 16(7), p. 1209-1214 (1982), in Russian. 31. Nanomaterials and related products catalogue & price-list . PlasmaChem. Surface and Nano-Technology, 2014, p. 1-48. 32. A. Irman, Modification of Spontaneous Emission of Quantum Dots by Photonic Crystals . Graduation Thesis 11 November 2003. Complex Photonic Systems (COPS) Group MESA+ Institute Faculty of Science and Technology University of Twente, Enschede, The Netherlands. P. 1-48. 33. O.I. Mićic, H.M. Cheong, H. Fu, A. Zunger, J.R. Sprague, A. Mascarenhas, and A.J. Nozik, Size-dependent spectroscopy of InP quantum dots . J. Phys. Chem. B, 101, p. 4904-4912 (1997). https://doi.org/10.1021/jp9704731 34. S.A. Blanton, M.A. Hines, P. Guyot-Sionnest, Photoluminescence wandering in single CdSe nanocrystals . Appl. Phys. Lett. 69(25), p. 3905-3907 (1996). https://doi.org/10.1063/1.117565 35. A.P. Alivisatos, Electrical studies of semiconductor-nanocrystal colloids . MRS Bulletin, 23, Issue 2, p. 18-23 (1998). https://doi.org/10.1557/S0883769400031225 36. M.J. Fernée, C. Sinito, Y. Louyer, P. Tamarat and B. Lounis, The ultimate limit to the emission linewidth of single nanocrystals . Nanotechnology, 24, 465703 (5p.) (2013). 37. H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, and J. Silcox, Optical properties of colloidal PbSe nanocrystals . Nano Lett. 2, No. 11, p. 1321-1324 (2002). https://doi.org/10.1021/nl025785g 38. B. Norton, P.C. Eames, T.K. Mallick, Ming Jun Huang, S.J. McCormack, J.D. Mondol, Y.G. Yohanis, Enhancing the performance of building integrated photovoltaics . Solar Energy, 85, p. 1629-1664 (2011). https://doi.org/10.1016/j.solener.2009.10.004 39. S. Peeters, Reabsorption Losses in Luminescent Solar Concentrators . Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: fotonica Academiejaar 2010-2011. P. 1-72. 40. N.J. Cronin, Microwave and Optical Waveguides. CRC Press, 1995. 41. R.R.A. Syms and J.R. Cozens, Optical Guided Waves and Devices. McGraw-Hill, 1992. 42. D.K.G. de Boer, D.J. Broer, M.G. Debije, W. Keur, A. Meijerink, C.R. Ronda, and P.P.C. Verbunt, Progress in phosphors and filters for luminescent solar concentrators . Opt. Exp. 20, No. S3, p. A395-A405 (2012). https://doi.org/10.1364/OE.20.00A395 43. International Crystal Laboratories. Optics & Spectroscopy Supplies & Accessories. Tel. (973) 478-8944. Fax. (973) 478-4201. 44. Fused Silica (FS) . Del Mar Ventures. 4119 Twilight Ridge, San Diego, CA 92130, tel: (858) 876-3133, fax: (858) 630-2376, optics@sciner.com, http:. www.sciner.com. Opticsland. 45. Optical glass. Data sheet . Schott North America, Inc. Advanced Optics. 400 York Avenue Duryea, PA 18642 USA. info.optics@us.schott.com; www.us.schott.com. 46. TIE-35: Transmittance of optical glass . October 2005. Optics for Devices SCHOTT North America, Inc. 400 York Avenue Duryea, PA 18642 USA, 47. H. Cao, J.W. Adams and P.D. Kalb, Low Temperature Glasses for Hanford Tank Wastes . Annual Report. FY 1995. Environmental Sciences Department Brookhaven National Laboratory Brookhaven Science Associates Upton, Long Island New York, 11973, Under Contract No. DE- 48. Measurement of Optical Characteristic of Plastic by UH4150 Spectrophotometer. An example of High Throughput measurements in the UV, Visible and Near-Infrared Regions . Hitachi High-Technologies Corporation. 49. D.W. Swanson, J.J. Licari, Adhesives Technology for Electronic Applications – Materials, Processing, Reliability. Materials and Processes for Electronic Applications. Elsevier Science, August 2005. 50. Handbook for designer of optical-and-mechanical devices . V.A. Panov, M.Ia. Kruger, V.V. Kulagin et al. Mashinostroenie, Leningrad, 1980 (in Russian). |