Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19,
N2. P. 290-294. 2. B.S. Rana, Effect of graphite filler on dielectric properties of polymer composite . Special Issue on International Journal of Recent Advances in Engineering & Technology (IJRAET) Vol. 4, Iss. 5, 2016, For National Conference on "Recent Innovations in Engineering and Management Sciences" (RIEMS-2016) Modern Engineering & Management Studies Balasore, ODISHA, ISSN (Online): 2347-2812, March 20, 2016. 3. M. Matsuo, Electric, Dielectric and Magnetic Properties of Polymer and Carbon Fillers . International Workshop on Advanced Polymer Science and Turbulent Drag Reduction, March 10–20, 2008. 4. E. Tuncer, Y.V. Serdyuk, S.M. Gubanski, Dielectric mixtures: Electrical properties and modeling . Transactions on Dielectrics and Electrical Insulation, 9, No.5, p. 809-828 (2002). https://doi.org/10.1109/TDEI.2002.1038664 5. W. Zheng, Sh.-Ch. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites . Composites Sci. and Technol. 63, p. 225-235 (2003). https://doi.org/10.1016/S0266-3538(02)00201-4 6. H. Oxfall, G. Ariu, T. Gkourmpis, R.W. Rychwalski, M. Rigdahl, Effect of carbon black on electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butylacrylate) composites . eXPRESS Polymer Letters, 9, No.1, p. 66-76 (2015). https://doi.org/10.3144/expresspolymlett.2015.7 7. C. Calberg, S. Blacher, F. Gubbels, F. Brouers, R. Deltour and R. Jerome, Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends . J. Phys. D: Appl. Phys. 32 p. 1517-1525 (1999). https://doi.org/10.1088/0022-3727/32/13/313 8. M. Pluta, M. Alexandre, S. Blacher, P. Dubois, R. Jerome, Metallocene-catalyzed polymerization of ethylene in the presence of graphite. II. Structure and electrical properties of the composites . Polymer, 42, No. 22, p. 9293-9300 (2001). https://doi.org/10.1016/S0032-3861(01)00469-4 9. L. He, S.-C. Tjong, Electrical behavior and positive temperature coefficient effect of graphene/poly-vinylidene fluoride composites containing silver nanowires . Nanoscale Res. Lett. 9, p. 375 (2014). https://doi.org/10.1186/1556-276X-9-375 10. P.H.S.L. Coelho, M.S. Marchesin, A.R. Morales, J.R. Bartoli, Electrical Percolation, Morphological and Dispersion Properties of MWCNT/PMMA Nanocomposites . Materials Res. 17 (Suppl. 1), p.127-132 (2014). https://doi.org/10.1590/S1516-14392014005000059 11. K.-B. Yoon, G. H. Lee, W. Y. Choi, and D. Lee, Electrical properties of non-crosslinked polyethylene/syndiotactic polystyrene composites filled with carbon black . Polymer J., 39, No. 11, p. 1143-1149 (2007). https://doi.org/10.1295/polymj.PJ2007046 12. G. Pavoski, T. Maraschin, M.A. Milani, D.S.Azambuja, R. Quijada, C.S. Moura, N.S. Basso, G. B. Galland, Polyethylene/reduced graphite oxide nanocomposites with improved morphology and conductivity . Polymer, 81, p.79-86 (2015). https://doi.org/10.1016/j.polymer.2015.11.019 13. http:. www.azom.com/news.aspx?newsID=46313 14. A.J. Twarowski, A.C. Albrecht, Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene . J. Chem. Phys. 70, p. 2255-2263 (1979). https://doi.org/10.1063/1.437729 15. Patent N 105113 Ukraine, CI G01N 27/02. Method of measuring the electrical properties of polymer / B.M. Savchenko, N.V. Sova, Ya.A. Kuryptya, O.O. Sleptsov, I.L. Sleptsova. – N 201507226; applied from 20.07.2015; publ. 10.03.2016, bul. N5. 16. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy. Springer, 2003. https://doi.org/10.1007/978-3-642-56120-7 17. W. Haase, S. Wrobel, Relaxation Phenomena: Liquid Crystals, Magnetic Systems, Polymers, High-Tc. Springer, 2003. https://doi.org/10.1007/978-3-662-09747-2 18. T.L. Chelidze, A.I. Derevianko, O.D. Kurilenko, Electrical Spectroscopy of Heterogeneous Systems. Naukova Dumka, Kiev, 1977 (in Russian). 19. A.V. Koval'chuk, Low and infra-low dielectric spectroscopy liquid crystal-solid state interface. Sliding layers . Ukr. J. Phys. 41(10), p. 991-998 (1996). 20. A.V. Koval'chuk, Relaxation processes and charge transport across liquid crystal-electrode interface . J. Phys.: Condensed Matter, 13, p. 10333-10345 (2001). https://doi.org/10.1088/0953-8984/13/46/306 |