Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3), P. 284-296 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.284


References

1.    Geim A.K. and Grigorieva I.V. Van der Waals heterostructures. Nature. 2013. 499. P. 419–425.
https://doi.org/10.1038/nature12385
 
2. Novoselov K.S., Mishchenko A., Carvalho A., Castro Neto A.H. 2D materials and van der Waals heterostructures. Science. 2016. 353. P. 6298.
https://doi.org/10.1126/science.aac9439
 
3. Mak K.F., Lee C., Hone J., Shan J., and Heinz T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010. 105. P. 136805.
https://doi.org/10.1103/PhysRevLett.105.136805
 
4. Chernikov A., Berkelbach T.C., Hill H.M., Rigosi A., Li Y., Aslan O.B., Reichman D.R., Hybertsen M.S., and Heinz T.F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014. 113. P. 076802.
https://doi.org/10.1103/PhysRevLett.113.076802
 
5.    Cudazzo P., Sponza L., Giorgetti C., Reining L., Sottile F., and Gatti M. Exciton band structure in two-dimensional materials. Phys. Rev. Lett. 2016. 116. P. 066803.
https://doi.org/10.1103/PhysRevLett.116.066803
 
6. Trushin M., Goerbig M.O., and Belzig W. Optical absorption by Dirac excitons in single-layer transition-metal dichalcogenides. Phys. Rev. B. 2016. 94. P. 041301.
https://doi.org/10.1103/PhysRevB.94.041301
 
7. Gourmelon E., Lignier O., Hadouda H., Couturier G., Bernède J.C., Tedd J., Pouzet J. and Salardenne J. MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells. 1997. 46. P. 115-121.
https://doi.org/10.1016/S0927-0248(96)00096-7
 
8. Lopez-Sanchez O., Llado E.A., Koman V., Fontcuberta A., Morral I., Radenovic A., and Kis A. Light generation and harvesting in a van der Waals heterostructure. ACS Nano. 2014. 8. P. 3042–3048.
https://doi.org/10.1021/nn500480u
 
9. Beard M.C., Luther J.M., and Nozik A.J. The promise and challenge of nanostructured solar cells. Nature Nanotechnol. 2014. 9. P. 951–954.
https://doi.org/10.1038/nnano.2014.292
 
10. Kuryoz P.Yu., Poperenko L.V., and Kravets V.G. Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films. phys. status solidi (a). 2013. 210. P. 2445–2455.
 
11. Makinistian L., Albanesi E.A., Gonzalez Lemus N.V. et al. Ab initio calculations and ellipsometry measurements of the optical properties of the layered semiconductor In4Se3. Phys. Rev. B. 2010. 81. P. 075217.
https://doi.org/10.1103/PhysRevB.81.075217
 
12. Kravets V.G., Grigorenko A.N., Nair R.R., Blake P., Anissimova S., Novoselov K.S., and Geim A.K. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B. 2010. 81. P. 155413.
https://doi.org/10.1103/PhysRevB.81.155413
 
13.    Rozouvan T., Poperenko L., Kravets V., Shay-kevich I. Enhancement of absorption in vertically-oriented graphene sheets growing on a thin copper layer. Appl. Surf. Sci. 2017. 396. P. 1–7.
https://doi.org/10.1016/j.apsusc.2016.11.040
 
14.    Yim C., O'Brien M., McEvoy N., Winters S., Mirza I., Lunney J.G., and Duesberg G.S. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 2014. 104. P. 103114.
https://doi.org/10.1063/1.4868108
 
15.    Li Y., Chernikov A., Zhang X., Rigosi A., Hill H.M., van der Zande A.M., Chenet D.A., Shih E.-M., Hone J., and Heinz T.F. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B. 2014. 90. P. 205422.
https://doi.org/10.1103/PhysRevB.90.205422
 
16.    Morozov Yu.V. and Kuno M. Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2. Appl. Phys. Lett. 2015. 107. P. 083103.
https://doi.org/10.1063/1.4929700
 
17.    Chhowalla M., Shin H.S., Eda G., Li L.-J., Loh K.P. and Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013. 5. P. 263–275.
https://doi.org/10.1038/nchem.1589
 
18.    Halim U., Zheng C.R., Chen Y., Lin Z., Jiang S., Cheng R., Huang Y. and Duan X. A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nat. Commun. 2013. 4. P. 2213.
https://doi.org/10.1038/ncomms3213
 
19. Beattie J.R. Optical constants of metals. J. Phil. Mag. 1955. 46. P. 235–245.
https://doi.org/10.1080/14786440208520566
 
20.    Azzam R.M.A. and Bashara N.M. Ellipsometry and Polarized Light. North-Holland, Amsterdam, 1977.
 
21.    Kravets V.G., Petford-Long A.K., Kravets A.F. Optical and magneto-optical properties of (CoFe)x(HfO2)1-x magnetic granular films. J. Appl. Phys. 2000. 87. P. 1762–1768.
https://doi.org/10.1063/1.372089
 
22.    Born M. and Wolf E. Principles of Optics. Cambridge University Press, Cambridge, England, 1999.
https://doi.org/10.1017/CBO9781139644181
 
23.    Wooten Frederick, Optical Properties of Solids. New York and London: Academic Press, 1972.
 
24.    Mennicke R.T., Bozec D., Kravets V.G. et al. Modelling the magneto refractive effect in giant magnetoresistive granular and layered materials. J. Magn. Mag. Mat. 2006. 303. P. 92–110.
https://doi.org/10.1016/j.jmmm.2005.10.233
 
25.    Tonndorf P., Schmidt R., Bouttger P., Zhang X., Bourner J., Liebig A., Albrect M., Kloc Ch., Gordan O., Zahn D.R.T., de Vasconcellos S.M., Bratschitsch R. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Exp. 2013. 21. P. 4908–4916.
https://doi.org/10.1364/OE.21.004908
 
26. Li H., Zhang Q., Yap C.C.R., Tay B.K., Edwin T.H.T., Olivier A., and Baillargeat D. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 2012. 22. P. 1385–1390.
https://doi.org/10.1002/adfm.201102111
 
27. Molina-Sánchez A. and Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B. 2011. 84. P. 155413.
https://doi.org/10.1103/PhysRevB.84.155413
 
28. Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B. 2012. 86. P. 115409.
https://doi.org/10.1103/PhysRevB.86.115409
 
29. Eichfeld S.M., Eichfeld C.M., Lin Yu-C., Hossain L. and Robinson J.A. Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry. APL Materials. 2014. 2. P. 092508.
https://doi.org/10.1063/1.4893961
 
30. Ding Y., Wang Y., Ni J., Shi L., Shi S., and Tang W. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. Physica B. 2011. 406. P. 2254–2260.
https://doi.org/10.1016/j.physb.2011.03.044
 
31. Sundaram R.S., Engel M., Lombardo A., Krupke R., Ferrari A.C., Avouris P., and Steiner M. Electroluminescence in single layer MoS2. Nano Lett. 2013. 13. P. 1416–1421.
https://doi.org/10.1021/nl400516a
 
32. Bonaccorso F., Sun Z., Hasan T. & Ferrari A.C. Graphene photonics and optoelectronics. Nature Photon. 2010. 4. P. 611–622.
https://doi.org/10.1038/nphoton.2010.186
 
33. Wilson J.A., Yoffe A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969. 18. P. 193−335.
https://doi.org/10.1080/00018736900101307
 
34. Kuc A., Zibouche N., Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B. 2011. 83. P. 245213.
https://doi.org/10.1103/PhysRevB.83.245213
 
35. Consadori F., Frindt R.F. Crystal size effects on the exciton absorption spectrum of WSe2. Phys. Rev. B. 1970. 2. P. 4893–4896.
https://doi.org/10.1103/PhysRevB.2.4893
 
36. Cao T., Wang G., Han W., Ye H., Zhu C., Shi J., Niu Q., Tan P., Wang E., Liu B., and Feng J. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012. 3. P. 887.
https://doi.org/10.1038/ncomms1882
 
37. Komsa H.P. and Krasheninnikov A.V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B. 2012. 86. P. 241201(R).
https://doi.org/10.1103/PhysRevB.86.241201
 
38. Molina-Sànchez A., Sangalli D., Hummer K., Marini A., and Wirtz L. Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2. Phys. Rev. B. 2013. 88. P. 045412.
https://doi.org/10.1103/PhysRevB.88.045412
 
39. Shen C.-C., Hsu Y.-T., Li L.-J., and Liu H.-L. Charge dynamics and electronic structures of monolayer MoS2 films grown by chemical vapor deposition. Appl. Phys. Exp. 2013. 6. P. 125801.
https://doi.org/10.7567/APEX.6.125801
 
40. Yu P.Y. and Cardona M. Fundamental of Semiconductors: Physics and Materials Properties, 2nd ed. Berlin: Springer, 1999.
https://doi.org/10.1007/978-3-662-03848-2
 
41. Splendiani A., Sun L., Zhang Y., Li T., Kim J., Chim C.-Y., Galli G., and Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010. 10. P. 1271–1275.
https://doi.org/10.1021/nl903868w
 
42. Huang Ch., Wu S., Sanchez A.M., Peters J.J.P., Beanland R., Ross J.S., Rivera P., Yao W., Cobden D.H., Xu X. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nature Materials. 2014. 13. P. 1096–1101.
https://doi.org/10.1038/nmat4064
 
43. Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., and Chhowalla M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011. 11. P. 5111–5116.
https://doi.org/10.1021/nl201874w